пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

18. Эмиграция лейкоцитов при инфильтрации. Учение Мечникова о фагоцитозе. Стадии фагоцитоза. Значение в развитии воспалительного процесса.

Лейкоцитарная инфильтрация при воспалении – стадийный процесс, разделяющийся для отдельной клетки на 3 этапа:

> Краевое стояние лейкоцитов, или маргинация, при которой эти клетки выходят из осевого кровотока и катятся по эндотелию, затем прикрепляются к эндотелию и «мостят» его изнутри. В результате кровоток уподобляется ручью, бегущему по ложу, устланному галькой.

> Диапедез, или проникновение лейкоцитов через стенку сосуда, которое занимает около 4 минут, начиная с момента остановки клетки у эндотелия. Все виды лейкоцитов способны к активному диапедезу. При этом полиморфонуклеары и моноциты протискиваются через межэндотелиальные щели амебоидным способом, выпуская псевдоподии. Этот процесс не сопровождается существенной экстравазацией жидкости, но требует от клетки больших энергозатрат. При преодолении базальной мембраны могут иметь значение лизосомальные коллагеназа и эластаза. Лимфоциты, помимо вышеописанного пути эмиграции, обладают способностью проникать прямо через цитоплазму живых клеток сосудистой стенки, не повреждая их. Это любопытное явление называется эмпериполез.

> Движение лейкоцитов к центру воспалительного очага, имеющее скорость порядка 20 мкм/мин. Оно носит характер хемотаксиса и рассматривается как первая фаза фагоцитоза.

Маргинация начинается со стадии артериальной гиперемии и продолжается вместе с выселением лейкоцитов при венозной гиперемии и стазе. Полный стаз приводит к уменьшению эмиграции и переносит центр событий во внесосудистое пространство, так как там активно продолжаются хемотаксис и фагоцитоз.

По современным представлениям, основной механизм эмиграции лейкоцитов состоит в комплементарных лиганд-рецепторных взаимодействиях между лейкоцитом и сосудистой стенкой, причем появление рецепторов индуцируется медиаторами воспаления.

Группа молекул-регуляторов минимально представлена в покоящихся лейкоцитах и эндотелиоцитах или, вообще, не экспрессирована на них (как ELAM-1). Кроме того, до активации молекулы адгезии секвестрированы во внутриклеточных гранулах и не функционируют. Часть из них распознает свои лиганды только после того, как первичная альтерация и/или медиаторы воспаления вызовут в последних конформационные изменения. При воспалении ряд медиаторов (фрагменты комплемента, лейкотриен В4, фактор активации тромбоцитов, трансферрин, цитокины: ИЛ-1, ИЛ-8, g-интерферон, ФНОa и ФНОb, пептидные хемотаксические факторы: мастоцитарные факторы хемотаксиса нейтрофилов, эозинофилов и базофилов, а также сами липополисахариды бактерий) вызывает освобождение молекул адгезии и их лигандов из гранул, конформационные изменения, благоприятствующие их комплементарным взаимодействиям и позже синтез молекул адгезии de novo. При этом часть медиаторов индуцирует повышение клейкости только у лейкоцитов (лейкотриен В – на нейтрофилах, факторы комплемента – на полиморфонуклеарах и моноцитах), часть действует только на эндотелий (ИЛ-1, эндотоксины бактерий), а большинство стимулирует и адгезивность лейкоцитов, и клейкость эндотелия (ФНО). Большинство медиаторов-усилителей адгезивных свойств синтезируется лимфоцитами и макрофагами, но и сам эндотелий под влиянием липополисахаридов бактерий, тромбина и ФНО способен вырабатывать, например, ИЛ-1.

Молекулы клеточной адгезии подразделяются на несколько семейств:

> Селектины – лектиновые молекулы клеточной адгезии (LECCFMs). Селектины опосредуют самую раннюю стадию маргинации лейкоцитов – обратимую адгезию. Благодаря взаимодействиям с их участием лейкоциты покидают осевой кровоток, претерпевают краевое движение и краевое стояние. Таблица 6 содержит общую характеристику селектинов.

Взаимодействие селектинов с участием олигосахаридных остатков позволяет лейкоцитам задержаться у эндотелиальных клеток.

> Интегрины – димерные трансмембранные белки, экспрессируемые лейкоцитами и другими клетками гемопоэтического ряда, фибробластами и клетками ряда внутренних органов. Эндотелий экспрессирует лишь некоторые интегрины. Они ответственны за поздние стадии адгезии активированных лейкоцитов и тромбоцитов к эндотелию и, частично, диапедез белых клеток крови через стенку сосуда

> Белки суперсемейства иммуноглобулинов, участвующие в адгезии и экспрессируемые. преимущественно, эндотелием, именуются ICAM. Это трансмембранные протеины с пятью внеклеточными доменами, их экспрессия усиливается ИЛ-1, ФНО и g-интерфероном (Таблица 8).

> Адресины – белки клеток внутренней выстилки высокоэндотелиальных венул. Эти сосуды лимфоидных органов – место физиологической адресной миграции лимфоцитов и других лейкоцитов, которое и опосредуется рецепцией адресинов.

В очаге острого воспаления эмиграция лейкоцитов характеризуется очередностью. Хотя для форсирования стенки сосуда отдельному нейтрофилу достаточно 3-12 мин, максимальная скорость выхода нейтрофилов приходится на первые 2 часа, а максимальное накопление этих клеток в очаге наступает к 4-6 часам.

Моноциты начинают эмиграцию вместе с нейтрофилами, но наращивают ее до 16-24 ч и после этого срока преобладают в инфильтрате. Считается, что лимфоциты начинают эмигрировать позже других лейкоцитов. Асинхронность эмиграции связана с неодновременным появлением молекул клеточной адгезии и хемотаксических факторов, специфичных для разных лейкоцитов.

Выходя из сосудов, лейкоциты проявляют положительный хемотаксис и приближаются к носителям хемоаттрактивных детерминант, что составляет уже первую стадию фагоцитоза.

Фагоцитоз – одно из самых блестящих открытий патофизиологии XIX века. И. И. Мечников описал фагоцитоз в 1883 г. как общебиологическое явление в жизнедеятельности одноклеточных и многоклеточных организмов, состоящее в поглощении клетками других клеток и твердых частиц. В настоящее время под фагоцитозом понимают захват клеткой путем рецепторного эндоцитоза при участии микрофиламентов объектов с диаметром более 1 мкм.

Таким образом, фагоцитоз – частный случай рецепторного эндоцитоза. Последний может проявляться и в иных формах – трансцитоза, адсорбтивного и жидкофазного пиноцитоза. Пиноцитоз не требует участия микрофиламентов, менее энергоемок и пригоден лишь для захвата меньших по размеру объектов.

У одноклеточных и низших многоклеточных фагоцитоз служит способом питания и защиты. С появлением в филогенезе мезодермы функции защиты переходят к ее производным. У высших животных фагоцитоз – не только способ защиты против экзогенных агрессоров, но и один из механизмов устранения собственных состарившихся клеток и апоптотических телец в ходе запрограммированной клеточной гибели на протяжении морфогенеза. Фагоцитоз обеспечивает развитие преиммунного и иммунного ответов, устраняет из кровотока иммунные комплексы, предупреждая иммунокомплексные болезни, утилизирует материал тромбов при тромболизисе и участвует в рассасывании рубцов, устранении микроэмболов и патологических продуктов обмена при тезаурисмозах. В ходе фагоцито­за его исполнителями реализуется сложный комплекс защитно-приспособительных механизмов, которые включают не только цитотоксическое или бактерицидное действие на объект фагоцитоза, но и секрецию медиаторов воспаления (экзоцитоз), активацию энергетического метаболизма фагоцита (дыхательная вспышка), процессинг антигенов и их представление лимфоцитам.

Подчеркивая важную роль фагоцитов при воспалении, Мечников говорил: «Нет воспаления без фагоцитоза». Патофизиология оценивает справедливость мечниковских слов, но это отнюдь не значит, что фагоцитоз не оказывает, наряду с саногенным, и патогенного действия.

Участники фагоцитоза – фагоциты. Мечников выделял макрофаги и микрофаги, впоследствии было установлено, что первые – это моноциты и их потомки. К последним Мечников причислил гранулоциты.

Сейчас говорят о системе мононуклеарных фагоцитов (состав которой приведен выше) и о полиморфонуклеарных фагоцитах, представленных, в основном, нейтрофилами. Способность к фагоцитозу присуща также эозинофилам и базофилам, но для них этот вид деятельности не является основным. В фагоцитозе, определенно, могут участвовать и тромбоциты, причем эта их функция сильно стимулируется a-фетопротеином. По некоторым данным, фагоцитировать способны и некоторые пролимфоциты, но зрелые лимфоидные клетки фагоцитами не являются. Эпизодически фагоцитируют даже клетки, не относящиеся к системе крови, например, нервные и эпителиальные, не являющиеся профессиональными фагоцитами.

Нейтрофил – короткоживущая клетка. В крови он находится, в среднем, 12-14 ч, а в тканях – не более 2-4 суток. При воспалениях нейтрофилы играют ту же роль, что ручные гранаты при боевых действиях: это фагоциты одноразового использования, которые обязательно гибнут при фагоцитозе, «разбрасывая» вокруг своего рода осколки – бактерицидные и цитотоксические факторы и медиаторы воспаления, в том числе и нейтрофильный хемотаксический фактор, привлекающий макрофаги, гранулоцитарный колониестимулирующий фактор, способствующий восполнению их пула и нейтрофильный пироген, вносящий некоторый вклад в стимуляцию преиммунного ответа организма.

Гибель нейтрофилов при воспалении связана не столько с кознями микробов, сколько с тем, что они не выдерживают собственного мощного окислительного удара, наносимого по флогогенным агентам системой продукции активных кислородных радикалов.

Не участвующие в воспалении нейтрофилы претерпевают апоптоз или экспрессируют антиген стареющих клеток и фагоцитируются макрофагами («экспроприация экспроприаторов»!). Остатки нейтрофилов и макрофагов, а также поврежденные клетки и микроорганизмы формируют гной. При нейтрофильном экссудате гной особенно богат миелопероксидазой, придающей ему зеленоватый цвет. Макрофаги лишены миелопероксидазы и формируют гной иного оттенка. Компоненты бактерий, например, синегнойной палочки, могут придавать гною особые, специфические цвет и другие свойства. Гной всегда проявляет гидролитическую активность и может участвовать в распространении воспаления и инфекции, что привело медицину к постулату «Ubi pus – ibi evacua».

Нейтрофилы отличаются менее широким репертуаром фагоцитируемых объектов, чем макрофаги. Последние принципиально способны фагоцитировать практически все объекты, доступные нейтрофилам (например, кокки и грибки), а также многие другие, не фагоцитируемые гранулоцитами. Так, фагоцитоз опухолевых клеток, а также клеток, зараженных вирусами и персистирующими интрацеллюлярными патогенами, является исключительно макрофагальным.

В то же время, в фагоцитозе стафилококков, стрептококков, включая пневмококки, диплококков и многих других возбудителей, условно обозначаемых как «гноеродная флора», роль нейтрофилов является решающей. Система мононуклеарных фагоцитов представлена как профессиональными фагоцитами, так и антиген-представляющими клетками различной локализации. Это, прежде всего, монобласты и промоноциты, моноциты и макрофаги костного мозга, пролиферация и дифференцировка которых находятся под влиянием ряда последовательно действующих цитокинов (плюрипотентного ростового фактора, ИЛ-6, ИЛ-1, ИЛ-3, GM-CSM), моноциты периферической крови, проводящие в ней, в среднем, 1-2 дня и покидающие кровеносное русло через высокоэндотелиальные венулы и синусоиды. В тканях моноциты превращаются в альвеолярные макрофаги легких, плевральные, перикардиальные, суставные и перитонеальные макрофаги серозных полостей, селезеночные макрофаги, клетки Купфера в печени, макрофаги лимфоузлов, микроглию головного мозга, остеокласты костей, гистиоциты соединительной ткани, мезангиальные макрофаги клубочков почек, эпителиоидные клетки. Фагоцитирующие макрофаги особенно активны при метаболическом взрыве и экзоцитозе медиаторов воспаления. Близкие к ним, но обособленные в функциональном и антигенном отношении антиген-представляющие макрофагальные клетки – это клетки Лангерганса в коже, интердигитирующие клетки тимуса и лимфоузлов, фолликулярные дендритические клетки герминативных центров. Помимо фагоцитоза, они специализированы на взаимодействии с лимфоцитами, обладают экспрессией белков ГКГС не только первого, но и второго класса, осуществляют процессинг антигенов и их презентацию и выделяют клеточно-специфические хемоаттрактивные пептиды.

В тканях как при воспалении, так и в норме, макрофаги представляют собой долгоживущие элементы и их участие в фагоцитозе и воспалении многократно. Более того, на протяжении воспаления макрофаг, по-видимому, в пределах своей специализации может менять спектр вырабатываемых медиаторов воспаления и влиять на его ход, не только управляя процессами альтерации и экссудации, но и оперируя противовоспалительными сигналами, участвуя в контроле и исполнении пролиферации и репаративного процесса в целом. Репертуар объектов фагоцитоза у макрофагов очень широк. Макрофаги не только выделяют, но и синтезируют заново медиаторы воспаления, принадлежащие ко всем химическим группам.

Это важные источники арахидоновых производных и АКР, причем они обладают значительным антиоксидантным потенциалом и, как правило, выживают при нанесении окислительного удара по микробам и другим мишеням фагоцитоза. В отличие от нейтрофилов и моноцитов крови, обладающих миелопероксидазой и генерирующих гипохлорит, зрелые тканевые макрофаги не содержат данного фермента, поэтому спектр вырабатываемых ими АКР богат перекисью водорода и гидроксильными радикалами, но не включает этот «естественный отбеливатель». Это может способствовать их выживанию при фагоцитозе. Мононуклеары способны вырабатывать биогенные амины и многие медиаторы, присущие нейтрофилам (гидролазы, лизоцим). Макрофаги синтезируют компоненты сторожевой полисистемы плазмы крови (включая факторы комплемента, факторы свертывания, предшественники кининов и активатор фибринолиза плазминоген). В отличие от нейтрофилов, они выделяют транспортные белки (трансферрин, транскобаламин, апопротеины липопротеидов), фибронектин, противовоспалительные антиоксиданты и ингибиторы протеаз (a2-макроглобулин, С-реактивный белок, a1-антитрипсин и другие положительные глобулины острой фазы плазмин). ИЛ-1, кахексин и a-интерферон также являются макрофагальными продуктами. Это делает исключительной роль макрофагального фагоцитоза как процесса, обеспечивающего с помощью этих цитокинов стартовые сигналы для преиммунного ответа – системного коррелята воспаления. Продромальный синдром, включая лихорадку, распространенное повышение адгезивных свойств эндотелия, гипоферремию, ускорение СОЭ и типовой сдвиг белковых фракций в плазме крови, обеспечивается, в основном, макрофагальными цитокинами. Истощение при хронических воспалениях и опухолевых процессах опосредуется действием кахексина, значительная часть которого производится тоже активированны­ми макрофагами.

Лейкоцитоз при воспалениях стимулируется не только нейтрофилами, но и макрофагальными колониестимулирующими факторами. Макрофаги и, в еще большей степени, близкие к ним антигенпредставляющие клетки, выделяют хемоаттрактанты и ингибиторы миграции для лимфоцитов и гранулоцитов, участвующих в рекрутировании клеток в состав экссудатов и гранулём. Мононуклеарные фагоциты – мощный источник стимуляторов пролиферации и биосинтетической деятельности фибробластов (фактор роста, фактор ангиогенеза). Они могут и тормозить размножение клеток (опухолевых, некоторых бактериальных, например, туберкулезных и листериозных; а также лимфоидных). Доказано, что макрофаги, в отличие от гранулоцитов, сами могут пролиферировать в очагах воспаления, хотя их тканевой пул пополняется, по большей части, иммиграцией. Таким образом, роль макрофагов, по сравнению с другими фагоцитами, становится особенно важной при хроническом воспалении.

Наследственные и приобретенные нарушения в работе фагоцитов тяжело отражаются на ходе воспаления и снижают его защитную эффективность.

Процесс фагоцитоза подразделяется на 4 стадии:

1. Приближение к объекту фагоцитоза;

2. Прилипание фагоцита к поверхности объекта (распознавание рецепторами фагоцита опсонических детерминант объекта);

3. Погружение объекта в цитоплазму фагоцита;

4. Переваривание (или шире – киллинг-эффект, деградация объекта).

Приближение может быть и случайным, особенно, у фиксированных фагоцитов. Однако главным его механизмом служит хемотаксис.

Хемотаксисом называется направленное движение живых клеток по градиенту концентрации какого-либо распознаваемого ими вещества. Вещества, привлекающие клетки, называются хемоаттрактантами. По сути дела, хемоаттрактивная чувствительность, присущая всем лейкоцитам, включая не фагоцитирующие клетки – это прообраз обоняния на одноклеточном уровне.

Хемоаттрактанты, если они имеются на поверхности выделяющего их объекта, являются в то же самое время, и опсонинами, поскольку прямая ассоциация фагоцитарного рецептора хемоаттрактанта с его лигандом обеспечивает опсонизацию, то есть способствует прилипанию и дополнению клеточного «обоняния» своего рода осязанием. Например, и хемоаттрактантами, и опсонинами служат специфические иммуноглобулины и факторы комплемента. Часть хемоаттрактантов не является опсонинами, поскольку не присутствует на поверхности мишени фагоцитоза, а лишь выделяется клетками-участниками воспаления. Таковы интерлейкины и пептидные хемотаксические факторы.

Наряду с хемотаксисом различают хемокинез – явление не направленного увеличения локомоторной активности клеток под влиянием медиаторов воспаления. Например, гистамин, действуя на Н1-рецепторы нейтрофилов и эозинофилов, активирует их подвижность, но не обязательно в направлении нарастающего градиента своей концентрации.

Фагоцитирующие клетки имеют поверхностные рецепторы хемоаттрактантов. Хемоаттрактанты могут быть экзогенными и эндогенными, специфическими для определенного вида лейкоцитов или же универсальными.

Основные группы хемоаттрактантов следующие:

> Микроорганизмы и их продукты

> Компоненты системы комплемента распознаются лейкоцитарными рецепторами и оказывают хемоаттрактивный и опсонизирующий эффект. На лейкоцитах – лимфоцитах, нейтрофилах, эозинофилах и макрофагах имеются несколько типов комплемент-чувствительных рецепторов.

> Продукты повреждения и метаболизма клеток являются хемоаттрактантами для лейкоцитов.. Хемоаттрактивными для макрофагов (и фибробластов) являются и продукты деградации внеклеточных белков: фибрина (фибрин-пептид В), коллагена, а также фибронектин и тромбин. Повреждение клеточных мембран ведет к продукции арахидоновых метаболитов, многие из которых, особенно, лейкотриен В4, а также гидроксиэйкозатетраеновые кислоты и тромбоксан А2, служат хемоаттрактантами для нейтрофилов, макрофагов и эозинофилов.

> Некоторые другие медиаторы воспаления могут быть хемоаттрактантами, в том числе, избирательными для тех или иных клеток. К ним относятся пептиды, привлекающие моноциты: нейтрофильные катионные белки, С-реактивный белок, цитокины ИЛ-1 и кахексин, тромбоцитарный фактор роста, трансформирующий фактор роста b. Мастоциты выделяют хемотаксические факторы для эозинофилов (содержит лейкотриен В4), нейтрофилов и лимфоцитов. Макрофаги способны генерировать хемотаксические пептиды для нейтрофилов и базофилов, в частности, именно так действует ИЛ-8. Макрофагальные продукты (фибронектин) могут привлекать фибробласты. Фактор активации тромбоцитов (ацетилглицериновый эфир фосфохолина), выделяемый макрофагами, гранулоцитами и эндотелием, оказывает мощное хемоаттрактивное действие на все лейкоциты.

> Иммунные комплексы и иммуноглобулины, особенно классов М и G, распознаются Fc-рецепторами лейкоцитов и оказывают хемоаттрактивный и опсонический эффект как через факторы комплемента, так и непосредственно.

Перемещение лейкоцита обеспечивается структурами цитоскелета: микрофиламентами и микротрубочками. Сопряжение функций цитоскелета и рецепции хемоаттрактанта достигается с участием ионов кальция, проникающих в эктоплазму фагоцита через каналы, которые открывают, занимая рецепторы, молекулы лиганда, а также выходящих из кальцисом. Пострецепторное сопряжение внутри фагоцита осуществляется по типичному механизму, вовлекающему систему G-белков.

Прилипание лейкоцитов к объектам фагоцитоза связано с распознаванием поверхностных детерминант мишеней рецепторами фагоцитов.

Некоторые объекты, например, многие бактерии или грибки-сахаромицеты, распознаются рецепторами экзогенных хемоаттрактантов напрямую. Определенную роль при этом могут играть рецепторы формил-метионина и таких сахаров, как манноза и фруктоза. Но большинство объектов фагоцитоза нуждается в опсонизации, то есть распознается только после прикрепления сывороточных факторов, к которым рецепторы фагоцитов обладают значительным аффинитетом. Сывороточные факторы, играющие при этом роль «адаптеров», называют опсонинами. Наиболее активны как опсонины иммуноглобулины (G1 и G2, в меньшей степени М и Е). Они распознаются Fсg- или иными Fc-рецепторами. Фактор комплемента С3b и его нестабильная форма iС3b (как при прямой активации объектами фагоцитоза, так и при активации иммуноглобулинами и иммунными комплексами) также оказывают опсониновый эффект через рецепторы CR1-CR3.

Опсонизация в несколько раз увеличивает активность прилипания, причем эффект иммуноглобулинов и комплемента аддитивен. Опсонизация – мощный усилитель фагоцитарной активности. Однако иногда и опсониновый эффект дает осечки или даже оборачивается против организма.

Термин «опсонизация» может трактоваться расширительно. Фагоцитоз фибрина, деградирующих белков соединительной ткани, нуклеопротеидов усиливается после присоединения к ним фибронектина, что, по существу, делает этот макрофагальный продукт опсонином при рассасывании тромбов, рубцов и клеточного детрита.

С-реактивный белок фактически также является ко-опсонином, так как связывает С-белок пневмококков и других микробов и опосредует прикрепление к ним факторов комплемента и фагоцитов. Сходным действием в отношении некоторых бактерий обладает лизоцим.

Активацию фагоцитов подавляют некоторые продукты бактерий («агрессины»). Так, микобактерии выделяют липоарабиноманнан, блокирующий ответ макрофагов на γ-интерферон.

При активации в фагоците происходит метаболический взрыв. При этом клетка увеличивается, в ней резко усиливается интенсивность реакций пентозного пути и гликолиза, распадается гликоген. Происходит накопление НАДФН и ГТФ, которые затем будут обеспечивать энергетически синтез АКР и работу элементов цитоскелета. Удельная теплопродукция лейкоцитов возрастает в 4-5 раз. Хотя общее потребление кислорода фагоцитом увеличивается, аэробное окисление не вносит в этот процесс решающего вклада, судя по тому, что цианиды не ингибируют метаболический взрыв и последующие события при фагоцитозе.

При активации на поверхности фагоцита появляются дополнительные молекулы клеточной адгезии и белки первого и второго классов главного комплекса гистосовместимости. Происходит экзоцитоз, в ходе которого гранулоциты подвергаются дегрануляции и освобождают медиаторы воспаления, кумулированные в гранулах. Макрофаги выделяют ИЛ-1, ИЛ-6 и кахексин, а также активаторы фибринолиза. Все фагоциты при активации синтезируют арахидоновые медиаторы воспаления. Активированные фагоциты увеличивают свою цитотоксическую, фагоцитарную и бактерицидную активность. В них начинается выработка активных кислородных радикалов.

Погружение внешне выглядит как охват объекта фагоцитоза псевдоподиями или накат фагоцита на объект. Это наводит на мысль об общности механизмов хемотаксиса и погружения. Некоторые авторы, особенно изучавшие фагоцитоз крупных частиц и клеток, уподобляют механизм погружения застегиванию молнии. При этом предполагается, что происходит последовательная ассоциация опсонических детерминант объекта с опсониновыми рецепторами фагоцита, таким образом, объект вдвигается в цитоплазму клетки. Поглощение объекта, покрытого иммуноглобулинами, происходит без дополнительных условий. При опсонизации С3b-фрагментом комплемента требуется одновременная активация фибронектинового и ламининового рецептора фагоцита внеклеточными лигандами, как если бы клетка «опиралась» на межклеточное вещество. Активация цитокиновых рецепторов фагоцита также может способствовать погружению объекта, опсонизированного С3b-фрагментом комплемента.

В результате погружения, объект оказывается в цитоплазме фагоцита, полностью окруженный фагосомой, созданной путем инвагинации и замыкания участка клеточной мембраны. Процесс создания фагосомы, видимо, имеет много общего с образованием рецептосом при рецепторном эндоцитозе, когда окаймленные ямки плазматической мембраны, содержащие белок цитоскелета клатрин, замыкаются в опушенные везикулы. При участии микрофиламентов цитоскелета и особых белков-фъюзогенов, фагосома сливается с лизосомами и специфическими гранулами фагоцита (внутренняя дегрануляция), формируя фаголизосому, где и происходит завершающая стадия фагоцитоза. Все эти процессы, как и хемотаксис, зависят от кальция, протеинкиназы С и липидных внутриклеточных посредников.

Деградация объекта фагоцитоза (по классической терминологии – переваривание) служит заключительной стадией фагоцитоза. Главную роль здесь играют частично охарактеризованные выше кислород-зависимые цитотоксические механизмы фагоцитов (галогенизация и перекисное окисление компонентов захваченных объектов с участием гипохлорита, перекиси водорода, синглетного кислорода, гидроксильных радикалов, супероксидного аниона, оксийодидов и оксида азота). Вспомогательную роль выполняют бескислородные механизмы: катионные антибиотические белки, лактоферрин, лизоцим и, возможно, мочевина.

 


22.06.2014; 17:09
хиты: 148
рейтинг:0
Естественные науки
науки о жизни
физиология
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь