пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

10. хроматография, основы метода.

Хроматография – это физико-химический метод разделения веществ, основанный на распределении компонентов между двумя фазами – подвижной и неподвижной. Неподвижной фазой обычно служит твердое вещество (сорбент) или пленка жидкости, нанесенная на твердое вещество. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу.

Компоненты анализируемой смеси вместе с подвижной фазой перемещаются вдоль стационарной фазы, которую обычно помещают в колонку (стеклянную или металлическую трубку). Если молекулы разных компонентов разделяемой смеси обладают различной адсорбируемостью или растворимостью, то время их пребывания в неподвижной фазе, а следовательно, и средняя скорость передвижения по колонке различны. Одни компоненты остаются в верхнем слое сорбента, другие, с меньшей адсорбируемостью, оказываются в нижней части колонки, некоторые покидают колонку вместе с подвижной фазой. Так достигается разделение компонентов. Хроматография – динамический метод, связанный с многократным повторением сорбционных и десорбционных процессов, так как разделение происходит в потоке подвижной фазы. Это обеспечивает эффективность хроматографического метода по сравнению с методами сорбции в статических условиях.

Сорбция – поглощение паров, газов или растворенных веществ (сорбата) твёрдым телом или жидкостью (сорбентом) из окружающей среды,обратный процесс называют десорбцией. Различают поглощение вещества всей массой жидкого сорбента (абсорбция); поверхностным слоем твёрдого или жидкого сорбента (адсорбция). Сорбция, сопровождающаяся химическим взаимодействием сорбента с поглощаемым веществом (сорбатом), называется хемосорбцией.

При постоянной температуре адсорбция увеличивается с ростом концентрации раствора или давления газа. Зависимость количества поглощенного вещества от концентрации раствора или давления газа при постоянной температуре называют изотермой адсорбции. Математически эта зависимость может быть выражена уравнением Ленгмюра.

где n– количество адсорбированного вещества при равновесии;

n∞-максимальное количество вещество, которое может быть адсорбировано на данном адсорбенте;

b- постоянная;

с– концентрация.

По Ленгмюру на поверхности твердого тела имеется некоторое число мест с минимальной энергией, расположенных через определенные интервалы по всей поверхности. Их число равно n∞. На этих местах могут адсорбироваться молекулы из раствора или газа. В области небольших концентраций изотерма линейна (рис. 1), т.к. при bc<<1 знаменатель становится равным единице и уравнение переходит в: 

Это уравненение линейной адсорбции. Оно соответствует уравнению Генри. (Г-коэффициент Генри). При высокой концентрации bc>>1 уравнение Ленгмюра принимает вид n=n∞, что соответствует насыщению: изотерма адсорбции выходит на прямую, параллельную оси абсцисс.

Иногда зависимость количества адсорбированного вещества от концентрации раствора или давления газа отличается от изображенной на рисунке (например, вогнутой или S-образной). Это может быть вызвано образованием на поверхности адсорбента полимолекулярного слоя или неоднородностью поверхности.

Рис.1 Изотермы адсорбции

При адсорбции двух или нескольких веществ уравнение для i-того компонента принимает вид

Следует отметить также, что количество адсорбированного вещества будет определяться не только его концентрацией, но и сродством к адсорбенту. При адсорбции нескольких веществ, проявление сродства особенно заметно, так как возможно вытеснение одних сорбированных веществ другими, обладающими большим сродством, хотя имеющими, может быть, и меньшую концентрацию.

К преимуществам хроматографического анализа можно отнести, то что с помощью хроматографии возможны:

  • разделение сложных смесей органических и неорганических веществ на отдельные компоненты,
  • очистка веществ от примесей,
  • концентрирование веществ из сильно разбавленных растворов,
  • качественный и количественный анализ исследуемых веществ.

Классификация хроматографических методов

В основу классификации многочисленных хроматографических методов положены следующие признаки:

1) агрегатное состояние фаз;

2) механизм взаимодействия сорбент – сорбат;

3) способы проведения хроматографического анализа;

4) аппаратурное оформление (техника выполнения) процесса хроматографирования;

5) цель хроматографирования.

По агрегатному состоянию фазхроматографию разделяют на газовую и жидкостную. Газовая хроматография включает газожидкостную и газотвердофазную, жидкостная – жидкостно-жидкостную и жидкостно-твердофазную. Первое слово в названии метода характеризует агрегатное состояние подвижной фазы, второе – неподвижной.

По механизму взаимодействия сорбента и сорбатаможно выделить несколько видов хроматографии: адсорбционная основана на различии в адсорбируемости веществ твердым сорбентом; распределительная основана на различной растворимости разделяемых веществ в неподвижной фазе (газожидкостная хроматография) или на различной растворимости веществ в подвижной и неподвижной фазах (жидкостная хроматография); ионообменная хроматография – на разной способности веществ к ионному обмену; эксклюзионная хроматография – на различии в размерах и формах молекул разделяемых веществ; аффинная хроматография – на специфических взаимодействиях, характерных для некоторых биологических и биохимических процессов (например, антитело и антиген, гормон и рецептор и др.). Существует осадочная хроматография, основанная на образовании отличающихся по растворимости осадков разделяемых веществ с сорбентом, адсорбционно-комплексообразовательная, основанная на образовании координационных соединений разной устойчивости в фазе или на поверхности сорбента, и др.

Следует помнить, что классификация по механизму взаимодействия весьма условна: ее используют в том случае, если известен доминирующий механизм; часто процесс разделения протекает сразу по нескольким механизмам.

По технике выполнениявыделяют колоночную хроматографию, когда разделение проводится в специальных колонках, и плоскостную хроматографию, когда разделение проводится на специальной бумаге (бумажная хроматография) или в тонком слое сорбента (тонкослойная хроматография). В колоночной хроматографии используют насадочные или капиллярные колонки. Насадочную колонку заполняют сорбентом (насадкой), а внутреннюю стенку капиллярной колонки покрывают пленкой жидкости или пылью адсорбента.

В зависимости от цели проведения хроматографического процессаразличают аналитическую хроматографию (качественный и количественный анализ); препаративную хроматографию (для получения веществ в чистом виде, для концентрирования и выделения микропримесей); промышленную (производственную) хроматографию для автоматического управления процессом (при этом целевой продукт из колонки поступает в датчик). Хроматографию часто используют для исследовательских целей при изучении растворов, каталитических процессов, кинетики химических процессов и т.п.

Классификация по способам проведения анализа подразделяет хроматографию на три вида: 1) фронтальный, 2) проявительный, 3) вытеснительный.

Газовая хроматография

Газовая хроматография – это вариант хроматографии, в котором подвижной фазой является инертный газ (газ-носитель), протекающий через неподвижную фазу, обладающую большой поверхностью. Обычно в качестве подвижной фазы используют гелий, азот, аргон, водород, диоксид углерода или воздух.

Газ-носительдолжен быть:

  • инертным по отношению к разделяемым веществам и сорбенту,
  • взрывобезопасным
  • достаточно чистым.
  • обеспечивать соответствие его физических свойств получению высокой эффективности колонки и достаточной чувствительности детектора.

В зависимости от агрегатного состояния неподвижной фазы газовая хроматография подразделяется на газоадсорбционную, когда неподвижной фазой является твердый адсорбент, и газожидкостную, когда неподвижной фазой является жидкость, нанесенная на поверхность твердого носителя. В газовой хроматографии используется преимущественно элюентный (проявительный) способ проведения процесса хроматографирования.

Газовая хроматография – метод разделения летучих соединений. Этим методом можно проанализировать газообразные, жидкие и твердые вещества с молекулярной массой меньше 400 г/моль, удовлетворяющие определенным требованиям, главные из которых – летучесть, термостабильность, инертность и легкость получения. Количественный анализ можно провести только в том случае, если вещество термостойко, т.е. испаряется в дозаторе воспроизводимо и элюируется из колонки без разложения. При разложении вещества на хроматограмме появляются ложные пики, относящиеся к продуктам разложения. Вещество не должно образовывать устойчивых сольватов при растворении в неподвижной жидкой фазе и реагировать с материалами, из которых изготовлены детали хроматографа. Этим требованиям удовлетворяют, как правило, органические вещества, поэтому ГХ чаще используют как метод анализа органических соединений, хотя этим методом можно определять почти все элементы периодической системы в виде летучих соединений.

Газоадсорбционная хроматорафия

В газоадсорбционной хроматографии в качестве неподвижной фазы применяют различные адсорбенты – высокодисперсные искусственные или природные тела с высокой удельной поверхностью (10–1000 м2/г), поглощающие газы или пары. Адсорбция молекул из газовой фазы происходит за счет межмолекулярных взаимодействий, имеющих электростатическую природу; возможно образование водородной связи, но вклад этого взаимодействия уменьшается с ростом температуры.Адсорбент должен обладать следующими основными свойствами:

  • необходимой селективностью,
  • отсутствием каталитической активности,
  • химической инертностью к компонентам разделяемой смеси,
  • достаточной механической прочностью.

Основными адсорбентами, применяемыми в газо-адсорбционной хроматографии, являются активированные угли, силикагели, оксид алюминия. Неоднородность поверхности активных адсорбентов не дает возможности определять сильно адсорбирующиеся полярные молекулы, однако, в последнее время промышленностью выпускаются адсорбенты с достаточно однородной поверхностью, такие, как пористые стекла, пористые полимеры, синтетические цеолиты (молекулярные сита), макропористые силикагели (силохром, порасил, сферосил), позволяющие проводить анализ смесей сильнополярных веществ.

Наиболее широко метод газоадсорбционной хроматографии применяют для анализа смесей газов и низкокипящих углеводородов, не содержащих активных функциональных групп. Например, для разделения О2, N2, СО, СН4, СО2с успехом применяют глинистые материалы, сорбенты, называемые порапаками, используют для разделения гидридов металлов (Ge,As,Sn,Sb). Метод ГАХ на колонках с пористыми полимерными сорбентами– удобный и быстрый способ определения воды в неорганических и органических материалах.

Газожидкостная хроматография

В аналитической практике чаще используют метод газожидкостной хроматографии. Это связано с чрезвычайным разнообразием жидких неподвижных фаз. В газожидкостной хроматографии неподвижной фазой служит практически нелетучая при температуре колонки жидкость, нанесенная на твердый носитель. Количество жидкой фазы составляет 5-30% от массы твердого носителя.

К жидкой фазепредъявляется ряд жестких требований:

1) способность хорошо растворять компоненты смеси (если раство-римость мала, компоненты выходят из колонки очень быстро);

2) инертность по отношению к компонентам смеси и твердому носителю;

3) малая летучесть (чтобы не испарялась при рабочей температуре колонки);

4) термическая устойчивость;

5) достаточно высокая селективность, т.е. способность разделять смесь компонентов;

6) небольшая вязкость (иначе замедляется процесс диффузии);

7)способность образовывать при нанесении на носитель равномерную пленку, прочно с ним связанную.

Природа жидкой фазы является тем основным фактором, который определяет последовательность выхода компонентов из колонки. В качестве жидких фаз применяются неполярные парафины (например, сквалан, вазелиновое масло, апиезоны), умеренно полярные (сложные эфиры, нитрилы и др.) и полярные (полиэтиленгликоли или карбоваксы, гидроксиламины и др.)

Каждая жидкая фаза имеет температурные пределы применения. Нижний температурный предел – минимальная рабочая температура, соответствующая застыванию жидкой фазы. Обычно выбирают минимальную рабочую температуру колонки выше точки застывания жидкой фазы на 10-15оС. Верхний температурный предел – максимальная допустимая рабочая температура (МДРТ) жидкой фазы, выше которой она начинает разрушаться, при этом образуются летучие соединения, уносимые из колонки. Практика использования жидких фаз для анализа показывает, что необходимо работать с ними при температурах на 20- 30оС ниже МДРТ жидкой фазы.

Наибольшим температурным диапазоном использования в газо-жидкостной хроматографии обладают кремнийорганические полимеры, например, метилсиликоны – жидкости при комнатной температуре, а МДРТ их достигает 300-350оС. Наиболее термостабильными жидкими фазами являются карборан-силоксановые полимеры, в которые входят атомы бора, кремния и углерода. МДРТ этих соединений достигает 400оС.

Твердым носителемобычно служит практически инертное твердое вещество, на которое наносят неподвижную жидкость. Основное назначение твердого носителя в хроматографической колонке – удерживать жидкую фазу на своей поверхности в виде однородной пленки. В связи с этим твердый носитель должен:

  • иметь значительную удельную поверхность (0,5-10 м2/г), причем она должна быть макропористой во избежание адсорбции компонентов пробы.
  • отсутствием каталитической активности,
  • достаточной механической прочностью,
  • стабильностью при повышенных температурах,
  • однородностью пор по размерам, максимальной однородностью размера зерен.

Однако до настоящего времени не создано универсального носителя, удовлетворяющего всем перечисленным требованиям.

В качестве твердых носителей в газо-жидкостной хроматографии используются диатомиты (кизельгур, инфузорная земля), синтетические кремнеземы (макропористые силикагели, широкопористые стекла, аэросилогели), полимерные носители на основе политетрафторэтилена и т.д.

Часто используют модифицированные носители, ковалентно связанные с «жидкой» фазой. При этом стационарная жидкая фаза более прочно удерживается на поверхности даже при самых высоких температурах колонки. Химически связанная неподвижная фаза более эффективна.

Основные узлы газового хроматографа

Рис. 2. Блок-схема газового хроматографа

1 – баллон со сжатым газом; 2 – блок подготовки газа-носителя; 3 – фильтр; 4 – измеритель расхода газа; 5 – регулятор расхода газа; 6 – микрошприц для введения пробы; 7 – испаритель; 8 – хроматографическая колонка; 9 – термостат; 10 – детектор; 11– самописец; 12 – интегратор; 13 – цифропечатающее устройство

Современный газовый хроматограф состоит из следующих основных частей (рис.2):

1.Устройство подготовки пробы для хроматографического анализа (обогащение, концентрирование, пиролиз).

2.Баллон с газом-носителем и блок подготовки газа-носителя, включающий в себя очистку газа, установку расхода газа или давления, измерение расхода газа.

3.Устройство для ввода пробы и для ее испарения – дозатор-испаритель.

4. Блок анализатора, включающий в себя хроматографическую колонку и термостат колонки, регулирующий нужную температуру и измеряющий ее.

5. Детектор, преобразующий изменение состава компонентов в электрический сигнал.

6.Регистратор, записывающий результаты хроматографического анализа.

7.Электронный интегратор, автоматически фиксирующий площадь пика и время его выхода; цифропечатающее устройство, дисплей.

Одним из основных узлов газового хроматографа является дозатор, который предназначен для точного количественного отбора пробы и введения ее в хроматографическую колонку. В каждом хроматографе дозатор-испаритель устанавливается непосредственно у входа в хроматографическую колонку. Он представляет собой небольшую емкость, соединенную с началом хроматографической колонки и снабженную самоуплотняющейся термостойкой резиновой мембраной. В дозаторе следует поддерживать такую температуру, при которой происходило бы полное и быстрое испарение жидкого образца. Жидкую пробу дозируют микрошприцем, впуск газообразных проб часто осуществляют медицинским шприцем. В зависимости от концентрации и числа разделяемых компонентов объем вводимого газообразного образца колеблется от 1 до 10 мл, а объем жидкого образца – от 0,1 до 10 мкл. Вместе с газом-носителем введенный парообразный образец поступает в колонку, где происходит его сорбция.

Хроматографические колонки различны по форме, размерам и материалам. Наиболее распространены спиральные, U- и W - образные колонки длиной от 2 м и менее до нескольких десятков метров. Внутренний диаметр колонок обычно от 3 до 6 мм. Хроматографическая колонка должна отвечать ряду требований:

  • обладать химической инертностью по отношению к компонентам пробы;
  • диаметр колонки должен быть постоянным по длине;
  • колонка должна быть прочной и термостойкой.

Колонки изготавливают из нержавеющей стали, меди, латуни, стекла. Большое влияние на сорбируемость газа оказывает температура, поэтому хроматографические колонки, как правило, термостатируются. Обычно термостатирование производится при температурах, значительно превышающих комнатные, однако в некоторых случаях создаются температуры ниже 0оС при разделении низкокипящих газов.

Для обнаружения изменений в составе газа, прошедшего через колонку, предназначен детектор. Последний непрерывно измеряет концентрацию компонентов на выходе их из хроматографической колонки и преобразует концентрацию в электрический сигнал, который регистрируется самопишущим прибором.

Детекторы

Одним из наиболее распространенных детекторов является катарометр. Принцип его работы основан на измерении сопротивления нагретой вольфрамовой нити, которое зависит от теплопроводности омывающего газа. Количество теплоты, отводимое от нагретой нити при постоянных условиях, зависит от состава газа. Чем больше теплопроводность газа-носителя, тем большей чувствительностью будет обладать катарометр. Наиболее подходящим газом-носителем с этой точки зрения является водород, теплопроводность которого значительно превышает соответствующую характеристику большинства других газов. Однако в целях техники безопасности чаще применяется гелий, теплопроводность которого также достаточно велика. Достоинствами катарометра являются простота, достаточная точность и надежность в работе. Однако из-за невысокой чувствительности он не применяется для определения микропримесей.

Наибольшей чувствительностью обладают ионизационные детекторы, например, пламенно-ионизационный (ПИД), позволяющий обнаруживать до 10-12г. В этих детекторах измеряют электрическую проводимость пламени водородной горелки. При появлении в пламени водорода примесей органических соединений происходит ионизация пламени, пропорциональная концентрации примеси, что легко может быть измерено. Недостатком данного детектора является то, что он применим только для анализа органических веществ, а к неорганическим, таким как аммиак, сероводород, кислород, азот, оксид серы, оксид углерода и т.д., чувствительность детектора резко падает.

Теоретические основы хроматографии

Известно несколько теорий хроматографического процесса. Существенное значение имеют метод теоретических тарелок (классическая теория) и кинетическая теория.

В классической теории хроматографии хроматографическая колонка мысленно разбивается на ряд последовательных теоретических ступеней – тарелок, через которые периодически проходят порции газа. Предполагается, что за время нахождения порции газа на тарелке успевает установиться равновесие между подвижной и неподвижной фазами для всех компонентов. Таким образом, хроматографический процесс многоступенчатый и состоит из большого числа актов сорбции и десорбции или растворения и испарения, а сама колонка рассматривается как система, состоящая из совокупности многих ступеней – тарелок.

Длина элементарного участка колонки, на котором достигается состояние равновесия между концентрацией вещества в подвижной и неподвижной фазах, называется условно высотой, эквивалентной теоретической тарелке (ВЭТТ).

Число теоретических тарелок N рассчитывается как отношение общей длины колонкиLк высоте, эквивалентной теоретической тарелке, Н:

На практике непосредственно используют данные хроматограммы для определения числа теоретических тарелок.

Переходя к числу тарелок, получим

Более правильные результаты обычно получаются при расчете по модифицированному уравнению с использованием ширины на полувысоте ω0,5

Эффективность колонки тем выше, чем меньше высота, эквивалентная теоретической тарелке, и больше число теоретических тарелок.

Однако теория тарелок, основанная на допущении ступенчатого характера хроматографического процесса, по существу формальна, так как реальный процесс протекает непрерывно. Значения ВЭТТ и числа тарелок являются характеристиками размытости зон. Эти величины сохраняют свое значение и в кинетической теории хроматографии, учитывающей скорость миграции вещества, диффузию и другие факторы.

ВЭТТ, связана со скоростью потока уравнением Ван-Деемтера:

где А, В, С –константы; α– скорость подвижной фазы.

Константа Aсвязана с действием вихревой диффузии, которая зависит от размера частиц и плотности заполнения колонки.

Величина Всвязана с коэффициентом диффузии молекул в подвижной фазе, это слагаемое учитывает действие продольной диффузии.

Величина Схарактеризует кинетику процесса сорбция-десорбция, массопередачу и другие эффекты.

Влияние каждого слагаемого уравнения на величину Нв зависимости от скорости подвижной фазы показано на рисунке.

Суммарная кривая, характеризующая зависимость Н от скорости потока, представляет собой гиперболу.

Поскольку эффективность колонки тем выше, чем меньше высота, эквивалентная теоретической тарелке, оптимальная скорость подвижной фазы будет равна скорости, соответствующей точке минимума этой кривой. Чтобы найти эту точку, продифференцируем уравнение Ван Деемтера и производную приравняем нулю:

 

 

 

откуда Подставляя эту величину в уравнение Ван Деемтера, находим оптимальную высоту, эквивалентную теоретической тарелке:

Оценка эффективности, селективности и разделительной способности хроматографических колонок

В газовой хроматографии эффективность сорбента характеризуется:

а) временем удерживания компонентов (время от момента ввода пробы до выходамаксимума хроматографического пика);

б) коэффициентом разделения двух соседних пиков

в) коэффициентом селективности жидкой фазы

где ,- время удерживания для первого и второго компонента пробы, соответственно

 

Качественный анализ

Качественными характеристиками хроматографируемых веществ в определенных условиях проведения опыта служат удерживаемый объем и время удерживания. Качественный анализ основан на измерении и сопоставлении этих величин. Существует несколько методов идентификации на основе характеристик удерживания.

1.Применение индивидуальных эталонных веществ. При этом проводят разделение анализируемой и эталонной смесей в одинаковых условиях. Равенство времен удерживания пиков соответствующих компонентов обеих смесей может служить основанием для идентификации.

Другой вариант заключается в том, что в исследуемую смесь вводят эталонный компонент, наличие которого в этой смеси предполагается. Увеличение высоты соответствующего пика (без его расширения) по сравнению с высотой этого пика на хроматограмме, полученной до введения эталона, может свидетельствовать о присутствии искомого соединения в анализируемой смеси.

2. Использование табличных данных о характеристиках удерживания. В настоящее время опубликовано много таблиц со значениями относительных удерживаемых объемов для самых различных веществ. Эти таблицы можно использовать при отсутствии необходимых эталонных соединений. Анализируемую смесь разделяют на колонке при условиях, указанных в соответствующей таблице, причем предварительно в смесь вводят небольшое количество веществ, служащих стандартами. На основе полученной хроматограммы рассчитывают относительные удерживаемые объемы, индексы удерживания или другие характеристики. Полученные значения сравнивают с табличными данными.

3. Нехроматографические методы идентификации. Эффективным оказалось сочетание газовой хроматографии с другими методами исследования, например, с ИК-спектроскопией и масс-спектрометрией. По каталогу спектров или по эталонным веществам идентифицируют анализируемые вещества. Возможно использование также методов ядерного магнитного резонанса, пламенной фотометрии и других, включая и химические методы (например, с применением химических реакций до и после хроматографической колонки).

Количественный анализ

Количественный хроматографический анализ основан на измерении высоты или площади пика, зависящих от концентрации хроматографируемых веществ. Чаще всего для количественных расчетов измеряют площадь пика (S). Для измерения площадей пиков существует несколько приемов. Упрощенный метод состоит в умножении высоты пика (h) на его ширину, измеренную на расстоянии, равном половине высоты (µ1/2). Этот метод очень распространен и достаточно точен. Его применение возможно при условии получения симметричных пиков и при полном разделении веществ.

Основными методами количественного анализа являются следующие: метод абсолютной градуировки, метод внутреннего стандарта, метод простой нормировки и нормировки с поправочными коэффициентами.

В методеабсолютной градуировки(внешнего стандарта) экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики. Далее определяют те же параметры пиков в анализируемой смеси и по градуировочному графику находят концентрацию анализируемого вещества.

Этот простой и точный метод является основным методом определения микропримесей. Кроме того, метод не требует разделения всех компонентов смеси, а ограничивается лишь теми, определение которых необходимо в данном конкретном случае.

Метод внутреннего стандартаоснован на введении в анализируемую смесь точно известного количества стандартного вещества. В качестве стандартного выбирают вещество, близкое по физико-химическим свойствам к компонентам смеси. Это вещество должно отсутствовать в исследуемой смеси и давать на хроматограмме пик, отдельный от других компонентов. После хроматографирования измеряют площади пиков анализируемого компонента (Si) и стандартного вещества (SCT). Массовую долю компонента (Wi, %) рассчитывают по формуле:

где r – отношение массы внутреннего стандарта к массе пробы.

Достоинством метода внутреннего стандарта является хорошая воспроизводимость, высокая точность, отсутствие влияния на измеряемые величины небольших колебаний условий опыта.

К недостаткам относятся требование точной дозировки стандарта и хорошего отделения пика стандарта от пиков анализируемых веществ. Пользование калибровкой возможно только для той области концентраций, в которой сохраняется линейная зависимость между показаниями детектора и концентрацией определяемого вещества.

Метод простой нормировкичаще всего используют на практике. Для его использования необходимо, чтобы на хроматограмме были зарегистрированы все компоненты, входящие в состав анализируемой смеси; сумму площадей всех пиков принимают за 100 %. Тогда отношение площади одного пика к сумме площадей, умноженное на 100, будет характеризовать массовую долю (%) компонента в смеси.

Этот метод основан на том предположении, что вещества, взятые в одинаковом количестве, дают одну и ту же площадь пика, независимо от их строения. Это приближенно выполняется, если вещества химически сходны, а в качестве газа-носителя применяется газ с высокой теплопроводностью (водород или гелий).

Если чувствительность детектора различна по отношению к разделяемым компонентам смеси, то используют метод нормировки с поправочными коэффициентами. В этом случае расчет ведут по формуле:

где ki– поправочный коэффициент i-го компонента (мг/см2).

Поправочные коэффициенты получают при анализе стандартных серий и рассчитывают по формуле

где с – концентрации определяемого и стандартных веществ.

Метод нормировки требует полного разделения и идентификации всех компонентов смеси; необходимости в знании калибровочных коэффици35ентов для всех без исключения компонентов смеси. Ошибки в определении параметра пика или калибровочного коэффициента какого-либо одного компонента приводят к неверным результатам всего анализа. Поэтому метод нормировки применяется главным образом для рутинных анализов малокомпонентных смесей и для приближенных результатов.

 


19.01.2017; 21:05
хиты: 242
рейтинг:0
Естественные науки
химия
физическая химия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь