пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Магистратура 1 семестр:
» Теория планирования многофакторных экспериментов
» Система поддержки и принятия решений
» Надежность и диагностика технологических систем
» Разработка высокоэффективных технологических процессах
Вступительные Магистратура:
» Технология Машиностроения
» Металлорежущие станки
» Технологическая оснастка
» Режущий инструмент
» Метрология, стандартизация и сертификация
» Основы математического моделирования процессов в машиностроении
7 семестр:
» Основы Автоматизированной Конструкторско-Технологической Подготовки
» Обеспечение Качества Изделий
» Планирование и организация эксперимента

35) Выбор способов повышения долговечности машин (ПЛОХО)

Основные факторы, лимитирующие надежность машин, следующие: поломки деталей; износ трущихся поверхностей; повреждения поверхностей в результате действия контактных напряжений, наклепа и коррозии; пластические деформации деталей, вызываемые местным или общим переходом напряжений за предел текучести или (при повышенных температурах) ползучестью.

Прочность в большинстве случаев не является непреодолимым лимитом. В машинах общего назначения возможно полное устранение поломок. При существующем в настоящее время ассортименте машиностроительных материалов, при существующих методах изготовления, при современном состоянии науки о прочности в этом классе машин нет деталей, которым нельзя было бы придать практически неограниченную долговечность.

В случае машин напряженного класса, вроде транспортных, задача сложнее. Требования габаритных размеров и массы заставляют повышать расчетные напряжения, вследствие чего вероятность поломок увеличивается. Однако непрерывное совершенствование упрочняющей технологии и уточнение методов расчета позволяют и в данном случае значительно повысить прочность деталей, а, следовательно, и долговечность машины в целом.

Многие факторы случайности можно свести к минимуму: производственные (колебания механических характеристик материала, технологические дефекты) — тщательным контролем изделий на всех этапах изготовления; эксплуатационные (перегрузки. неправильное обращение с машиной) — чисто конструктивными мерами (введением систем защиты, предохранителей, блокировок).

В наихудшем положении находятся тепловые машины, долговечность которых зависит в первую очередь от стойкости деталей, работающих при высоких температурах.

Прочность материалов резко снижается с увеличением температуры. Кроме того, при повышенных температурах возникает явление ползучести (пластическое течение материала под действием сравнительно небольших напряжений), приводящее к изменению первоначальных размеров детали и, как следствие, к утрате ее работоспособности.

Детали, работающие при высоких температурах, рассчитывают на ограниченную долговечность. Срок их службы можно только повысить конструктивными приемами (снижением уровня напряжений, рациональным охлаждением) и главным образом применением жаропрочных материалов. В последнее время для изготовления термически напряженных деталей применяют металлокерамические (спеченные) материалы (керметы) на основе оксидов, нитридов и боридов Ti, Сг, Аl, карбидов и нитридов В и Si, со связкой из металлов Ni, Со, Мо.

Практически долговечность в наибольшей степени определяется изнашиваемостью деталей. Постепенно развивающийся износ ведет к общему ухудшению показателей машины, снижению точности выполняемых ею операций, падению КПД, увеличению энергопотребления и снижению полезной отдачи. С течением времени износ может вступить в катастрофическую стадию. Прогрессирующее повреждение вызывает поломки и аварии (разрушение подшипников качения, выкрашивание зубьев зубчатых колес и т. п.).

Основной вид износа в машинах — механический, который разделяется на износ абразивный, износ при трении скольжения, износ при трении качения и контактный. Некоторые детали подвержены износу химическому(коррозионному), тепловому, кавитационно-эрозионному. Разнообразие видов износа и различие их физико-механической природы требуют дифференцированного изучения и специальных методов предотвращения изнашиваемости.

Главными способами повышения износостойкости при механическом износе являются увеличение твердости трущихся поверхностей, подбор материалов трущихся пар, уменьшение давления на поверхностях трения, повышение качества поверхностей и правильная смазка.

Условия опыта (абразивный износ) отличаются от реальных условий работы смазанных поверхностей в машиностроительных узлах. Тем не менее они дают представление об огромном влиянии твердости на износостойкость.

Современная технология располагает эффективными средствами повышения поверхностной твердости: цементация и обработка ТВЧ (HV 500—600), азотирование (HV 800—1200), бериллизация (HV 1000—1200), диффузионное хромирование (HV 1200—1400), плазменное наплавление твердыми сплавами (HV 1400—1600), борирование (HV 1500—1800), бороцианирование (HV 1800—2000) и др.

Другое направление заключается в улучшении антифрикционных свойств поверхностей осаждением фосфатных пленок (фосфатирование), насыщением поверхностного слоя серой (сульфидирование), графитом (графитирование), дисульфидом молибдена и др. При умеренной твердости такие поверхности обладают повышенной скользкостью, малым коэффициентом трения, высокой устойчивостью против задиров, заедания и схватывания. Эти способы (особенно сульфидирование и обработка дисульфидом молибдена) увеличивают износостойкость стальных деталей в 10—20 раз. Применяют и сочетание обоих методов (например, сульфоцианирование, повышающее одновременно твердость и скользкость поверхностей).

Важное значение имеет правильное сочетание твердости парных поверхностей трения. При движении с малыми скоростями под высокими нагрузками целесообразно максимальное повышение твердости обеих поверхностей, а при движении с большими скоростями в присутствии смазки — сочетание твердой поверхности с мягкой, обладающей повышенными антифрикционными свойствами.

Эффективным способом увеличения износостойкости является уменьшение давления в трущихся соединениях. Иногда этого можно достичь уменьшением нагрузок (рациональная раздача сил) или снижением степени цикличности и ударности нагрузок. Наиболее простой способ заключается в увеличении площади поверхности трения, нередко достигаемом без существенного увеличения габаритных размеров.

Невыгодны зубчатые передачи с точечным контактом: передачи с перекрещивающимися осями, конические с криволинейными зубьями, косозубые колеса с большим углом наклона зубьев, а также крутовинтовые передачи Последние невыгодны еще и тем, что пятно контакта у них перемещается с большой скоростью вдоль зуба при наличии трения скольжения, тогда как в передачах с эвольвентным зубом преобладает трение качения с малой скоростью.

Особое направление заключается в компенсации износа, осуществляемой периодически или автоматически. К числу узлов с периодической компенсацией принадлежат подшипники скольжения с осевым или радиальным регулированием зазора (с коническими несущими или посадочными поверхностями, с периодически подтягиваемыми вкладышами). Другие примеры — осевая подтяжка подшипников качения (радиально-упорных) и регулирование зазора в прямолинейных направляющих с помощью переставных клиньев и планок.

Более совершенны системы с автоматической компенсацией износа (самопритирающиеся конические пробковые краны, торцовые и манжетные уплотнения, узлы подшипников качения с пружинным натягом, системы гидравлической компенсации зазоров в рычажных механизмах и т. д.).

Решающее значение имеет правильная смазка узлов трения. Везде, где это возможно, следует обеспечивать жидкостную смазку и устранять полужидкостную и граничную. Следует избегать открытых механизмов, смазываемых периодически набивкой. Нецелесообразно применение открытых зубчатых и цепных передач. Все трущиеся части должны быть заключены в закрытые корпуса и надежно защищены от пыли, грязи и атмосферной влаги.

Наилучшим решением являются полностью герметизированные системы с непрерывной подачей масла под давлением ко всем подвижным соединениям.

Эффективность смазки повышают введением присадок, улучшающих ее смазочные качества (коллоидальный графит, сера, дисульфид молибдена), увеличивающих маслянистость (олеиновая, пальмитиновая и другие органические кислоты), предупреждающих окисление (органические и металлоорганические соединения S, Р и N2), предотвращающих задиры (кремнийорганические соединения).

В условиях, когда применение жидких масел невозможно (работа при высоких или низких температурах, при радиации, в химически агрессивных средах, глубоком вакууме) или неэффективно (при колебательных движениях малой амплитуды, при ударных и высокочастотных нагрузках), применяют сухопленочные смазки на основе сульфидов, селенидов и теллуридов Mo, W, V и др. со связками металлов Fe, Ni, Ag, Au. Коэффициент трения соединений с сухопленочными смазками f = 0,14—0,25.

Другой способ — смазка сухими порошками, состоящими из микросфер (d = 13 мкм), изготовленных из твердых (HV 800—900) материалов (вольфрамовые сплавы, науглероженное карбонильное железо). В таких подшипниках происходит отчасти перекат одной несущей поверхности относительно другой по микросферам, главным же образом скольжение по очень подвижному и текучему слою порошка (псевдожидкостное трение).

Несущие поверхности изготовляют из материалов такой же твердости, что и микросферы (азотированные стали, металло- и минералокерамика, ситаллы).

Идеальным с точки зрения износостойкости является полное устранение металлического контакта между рабочими поверхностями. Примерами безызносных узлов являются электромагнитные опоры с «витающими» валами, электромагнитные муфты и насосы (передача крутящего момента и осевого движения электромагнитными силами), муфты жидкостного трения (передача крутящего момента силами вязкого сдвига силиконовой жидкости), гидравлические трансформаторы (передача крутящего момента гидродинамическими силами потока жидкости).


14.01.2019; 06:41
хиты: 55
рейтинг:0
Профессии и Прикладные науки
инженерное дело
технология машиностроения
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь