пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Многоэлектронные атомы. . Периодическая система Менделеева.

 

Бóльший заряд ядра приводит к слабому уменьшению размера атома и увеличению энергии связи электронов.

Порядок заполнения электронных состояний определяется двумя принципами:

  • принцип Паули: в атоме может быть только один электрон с данным набором квантовых чисел;
  • принцип минимума энергии: в основном состоянии атома электрон занимает квантовое состояние с наинизшей возможной энергией. Следует учесть, что вследствие взаимодействия электронов друг с другом значения энергии зависят не только от главного квантового числа n, но и от орбитального l.

Аннотация: Оценка энергии и размера атомов. Распределение электронов в атоме по возможным квантовым состояниям (с дополнением демонстрацией на компьютерной модели).

Оценка энергии атомов в основном состоянии

В. ГейзенбергНачнем с оценки энергии атома гелия (Физика за рубежом. 1988. Серия Б (преподавание): Сборник статей. М.:Мир, 1988, стр.130), основанной на использовании соотношения неопределенности Гейзенберга . В атоме гелия имеется два электрона с антипараллельными спинами. Их будем рассматривать как сферическое электронное облако со средним радиусом R. Минимальную кинетическую энергию электрона T, находящегося в объеме с линейным размером Rоценим по формуле

T=

Полная энергия атома складывается из энергии притяжения электронов к ядру (знак минус), энергии отталкивания электронов друг от друга и кинетической энергии электронов

Е=

где определим, что 1/R - среднее значение величины, обратной расстоянию электронов от ядра и 1/r12 - среднее значение величины, обратной расстоянию между электронами. Положим

T=

причем β будет меньше единицы, т.к. r12 больше среднего расстояния электронов от ядра R. Запишем выражение (1) в виде

T=

где A = (4 - β)e2, B = 2h2/4π2m, и найдем значение R, при котором энергия минимальна (приравняв производную от E по R нулю). Это значение R = B/A. Теперь имеем для основного состояния

Е=

Осталось определить значение β = R/r12. Обе величины R и r12 определяются плотностью распределения электронов в пространстве p(r). Радиус R найдем интегрированием R-1= 4π∫(p(r)/r)r2dr, а r12 через распределение потенциала U(r), создаваемое распределением заряда ep(r). Тогдаp(r)

r)r<sup>2</sup>

Простейший случай - прямоугольное распределение заряда (рисунок справа). Несложные вычисления дают значение β = 0.8. Для экспоненциального распределения p(r) ~ exp(r/b) величина β = 5/8.

Подстановка β = 0.8 в выражение (2) дает E = -5.1·13.6 эВ, для β = 5/8 получаем E = -5.7·13.6 эВ. Точный расчет энергии, необходимой для удаления обоих электронов атома гелия, дает E = -5.81·13.6 = 79.0 эВ. Удивительно: проведена грубая оценка, а получен такой близкий к точному результат. Энергия связи электрона в ионе гелия He+ равна 4·13.6 эВ, следовательно, энергия ионизации атома 24.6 эВ.

Таким же методом можно сделать оценки и для атомов с большим числом электронов Z. Есть одна тонкость в этом случае, связанная с принципом Паули: в атоме может быть только один электрон с данным набором квантовых чисел. Разделим весь объем атома на ячейки с линейным размером r0, которую могут занимать два электрона с антипараллельными спинами. Потребуется Z/2 таких ячеек, так что (Z/2)r03 = R3. И оценивать минимальную кинетическую энергию электрона с помощью соотношения неопределенности будем, полагая что электрон движется в объеме с линейным размером r0

Тмин

Если Z >> 1 выражение (1) следует заменить на

Е=

Здесь первое слагаемое - энергия притяжения Z электронов к ядру, второе - энергия отталкивания (Z-1)Z/2 электронных пар (попрежнему R/β - среднее расстояние между электронами), третье - оценка суммарной кинетической энергии всех электронов. Заменив Z(Z-1) на Z2, получим

Е=

Значение R, при котором энергия минимальна, и минимальное значение энергии равны, соответственно,

Е=

В этих формулах  - боровский радиус, равный 0.53·10-10 м. Для определения β задаемся распределением электронной плотности

р=

Множитель 1/rn обеспечит правильное поведение распределения у ядра, экспонента - убывание плотности при удалении от ядра. Постоянные A, n и b определяются из условий: нормировки (всего имеется Z электронов), того, что на K-оболочке (n = 1) находится два электрона, и равенства среднего < r-1 > = R-1. Итог вычислений - β = 1 - 2/π = 0.36. Подставив это значение в (3), получаем среднее расстояние электронов от ядра R и среднюю энергию связи электрона в атоме E/Z.

р=

Cреднее расстояние электронов от ядра R меньше размера атома , так как большинство электронов находится на внутренних оболочках. Размер атома  можно оценить, используя распределение электронной плотности p(r) и, оказывается, что он слабо зависит от Z, что показывают данные таблицы:

Z Rа/rБ
30 2.49
50 2.33
90 2.13

 

Бóльший заряд ядра приводит к слабому уменьшению размера атома и увеличению энергии связи электронов.

 

 

Электронные конфигурации

Наша задача - разобраться в том, как заполняются электронные уровни, и как меняются при этом свойства атома по мере его усложнения.

Состояние отдельного электрона в атоме характеризуется четырьмя квантовыми числами:Вольфганг Паули

  1. главным квантовым числом  n = 1, 2, 3,...;
  2. орбитальным квантовым числом  l = 0, 1, ...n-1;
  3. магнитным квантовым числом  ml = -1, -1+1, ...l-1 (всего 2l+1 значений);
  4. проекцией спина  ms = +1/2, -1/2;

Порядок заполнения электронных состояний определяется двумя принципами:

  • принцип Паули: в атоме может быть только один электрон с данным набором квантовых чисел;
  • принцип минимума энергии: в основном состоянии атома электрон занимает квантовое состояние с наинизшей возможной энергией. Следует учесть, что вследствие взаимодействия электронов друг с другом значения энергии зависят не только от главного квантового числа n, но и от орбитального l.

Совокупность электронов атома с заданным значением главного квантового числа n образует электронную оболочку атома (эти электроны объединяют близкие значения энергии и средняя удаленность от ядра; из последнего родилось и название). В водородоподобных атомах наиболее вероятное удаление от ядра зависит от n следующим образом

Rn.gif

Различные оболочки атома обозначаются буквами: K (n=1), L (n=2), M (n=3),... Значение орбитального квантового числа принято обозначать буквами:

Значение орбитального квантового числа 0 1 2 3 ...
Название состояния s p d f ...

 

Запись, указывающая оболочку, значение орбитального числа и количество электронов в оболочке, называется электронной конфигурацией атома. Сначала указывают главное квантовое число, затем название состояния по орбитальному числу (s, p, d и т.д.) и в виде степени у символа число электронов в этом состоянии. Например, 1s22s22p3 означает: 2 электрона имеют n = 1, l = 0, для следующих двух n = 2, l = 0, и последние три электрона находятся в состоянии с n = 2, l = 1. Это электронная конфигурация атома азота.

Порядок заполнения электронных состояний определяется двумя принципами:

  • принцип Паули, который гласит: в атоме не может быть двух электронов, все квантовые числа которых равны друг другу;
  • принцип минимума энергии - при данном количестве электронов в атоме реализуется состояние с наименьшей энергией;

Максимальное число электронов в оболочке с заданным значением n находим суммированием

summ.gif

В водородоподобных атомах с одним электроном без учета спина энергия электрона зависит только от главного квантового числа n

h8.gif.

В многоэлектронных атомах существено и взаимодействие электронов друг с другом. Расчеты показывают, что при данном n энергия электронов увеличивается с увеличением орбитального квантового числа l (образно говоря, центробежная сила, возникающая при орбитальном движении, стремится удалить электрон от ядра). По этой причине энергия электронов в 4s-состоянии оказывается меньше, чем в 3d-состоянии, и с 19K начинается заполнение состояний с n = 4, хотя не все состояния с n = 3 заняты. В итоге получаем следующую картину:

1s2 2 электрона
2s22p6 8 электронов
3s23p6 8 электронов
4s23d104p6 18 электронов
5s24d105p6 18 электронов
... ...

Вы можете потренироваться в заполнении электронных оболочек с помощью действующей компьютерной модели.

Можно также посмотреть, как выглядят пространственные распределения электронной плотности в различных состояниях (ссылка на источник здесь). Сколь причудливы и сложны эти распределения.

Электронное строение атомов и их свойства

 

  молекулярные орбитали
a - полученное с помощью компьютерной томографии (2004 г.)изображение молекулярной орбитали 2p s g; b - форма волновой функции вдоль межъядерной оси (штрихи - реконструкция на основании экспериментальных данных, сплошная линия - расчеты из первых принципов).
 

Z = 1 (водород). В этом атоме имеется один электрон в состоянии с квантовыми числами n = 1, l = 0, ml = 0, ms = +1/2 или -1/2. Энергия ионизации Ei = 13.6 эВ. Среднее расстояние электрона от ядра составляет около 0.75·10-10 м. Об этом атоме и его свойствах - отдельная лекция.

 

Z = 2 (гелий). Два электрона находятся в состоянии с квантовыми числами n = 1, l = 0, ml = 0, ms = +1/2 и -1/2 (т.е. два 1s электрона). Волновые функции, описывающие их состояние, несколько отличаются от водородных по форме из-за кулоновского отталкивания электронов, но главное отличие в масштабах величин. Для иона гелия из выражения (4), где есть множитель Z2, видно, что энергия связи электрона составит 54.4 эВ. Характерное расстояние электрона от ядра составит 0.53·10-10/Z м. В атоме гелия с двумя электронами из-за их отталкивания энергия ионизации составляет 24.6 эВ (нечто среднее между 13.6 для водорода и 54.4 для He+). Это самое большая величина для всех химических элементов. Оторвать электрон у атома гелия очень трудно, и в 1s состоянии нет вакантных мест. Поэтому гелий химически инертен, не образует молекул ни содним элементом.

Z = 3 (литий). В 1s состоянии находится два электрона, и принцип Паули запрещает поместить туда третий. Этот электрон находится в состоянии с n = 2 (2s) на большем удалении от ядра и с гораздо большей энергией (т.е. существенно меньшей энергией связи). Среднее удаление электрона от ядра так велико, что в первом приближении ядро и два электрона в 1s состоянии можно рассматриватькак точечный остов с зарядом +e. Третий электрон тогда с n = 2 должен иметь энергию (формула (4)) -13.6/4 = -3.4 эВ. Действительное значение -5.4 эВ, т.е. и правда малое (приближение не слишком плохое). Малое значение энергии ионизации означает, что литий имеет очень высокую активность. Размеры и энергии атома подтверждены надежными измерениями.

Z = 4 (бериллий). Электронная конфигурация - 1s22s2. Из-за увеличения Z энергия ионизации больше, чем для лития, и составляет 9.3 эВ. Для отрыва второго электрона в состоянии n = 2 надо затратить не на много больше, поэтому в химических соединениях бериллий имеет валентность +2.схема уровней

Z = 5 (бор). Электронная конфигурация - 1s22s22p1. Энергия ионизации 8.3 эВ (меньше, чем у бериллия). С одной стороны заряд ядра увеличился, с другой в 2p-состоянии энергия больше, чем в 2s. Второй фактор сильнее и, отделить электрон в 2p-состоянии легче. Валентность +3.

 ...

Z = 7 (азот), Z = 8 (кислород), Z = 9 (фтор). У атомов этих элементов не хватает трех, двух и одного электрона, соответственно, до заполнения оболочки с n = 2, а именно 2p состояния. Эти атомы химически электроотрицательны, т.е. в химических соединениях захватывают электроны. "Лишние" электроны оказываются связанными с ядром так же, как и остальные в 2p состоянии (хотя связь всех 2p электронов несколько меньше, чем в нейтральном атоме, из-за увеличения электрон-электронного отталкивания).

Z = 10 (неон). Все 10 возможных состояний с n = 1 и n = 2 заняты. Электронная конфигурация - 1s22s22p6. Энергия ионизации, пости непрерывно возраставшая, начиная с лития, составляет 21.6 эВ. Оторвать электрон трудно, и добавить тоже, т.к. дополнительный электрон должен был бы находиться в состоянии с n = 3 на большом удалении от ядра. Подобно гелию неон химически весьма инертен.

В элементах с Z = 11 (натрий) по Z = 18 (аргон) заполняются состояния 3s и 3p и по химическим свойствам они схожи с соответствующими элементами второго ряда (литий - неон).

Z = 19 (калий) и Z = 20 (кальций). Можно было бы ожидать, что начнется заполнение состояния 3d (l=2), но энергия электрона в состоянии 4s ниже, чем в 3d (см. схему уровней), и в обоих атомах последние электроны оказываются в 4s состоянии. Электронные конфигурации атомов - 1s22s22p63s23p64s1 и 1s22s22p63s23p64s2.

 ...

Далее следует заполнение состояний 3d, 4p, ... . Иногда оказывается энергетически более выгодным оказаться электрону не в 4s состоянии, а в 3d. Например, у атома меди (Z = 29) конфигурация 1s22s22p63s23p63d104s1, хотя у предшествуюшего атома никеля (Z = 28) 1s22s22p63s23p63d84s2.

Не будем далее продолжать перечень элементов (подробно порядок заполнения электронных оболочек описан в приведенной ниже литературе и наглядно демонстрируется впростой модели). Рассмотренные примеры показывают, что квантовая механика на основе электронных структур атомов удовлетворительно описывает все основные закономерности периодической системы элементов Менделеева.

 


хиты: 13
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь