пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

3. По какому признаку осуществляется классификация компьютера на поколения и сколько поколений в настоящее время существует.

Электронно-вычислительная машина (ЭВМ) или компьютер (англ. computer — «вычислитель»),— машина для проведения вычислений, а также приёма, переработки, хранения и выдачи информации по заранее определённому алгоритму (компьютерной программе). На заре эры компьютеров считалось, что основная функция компьютера — вычисление. Однако в настоящее время полагают, что основная их функция — управление.

Классификация компьютеров осуществляется по этапам развития. Всего существует пять поколений компьютеров. Все поколения отличаются элементной базой.

 

Поколение первое - Компьютеры на электронных лампах (1945-1954)

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

ЭНИАК (ENIAC, сокр. от англ. Electronic Number Integrator And Computer — Электронный числовой интегратор и вычислитель) — первый широкомасштабный электронный цифровой компьютер, который можно было перепрограммировать для решения полного диапазона задач (предыдущие компьютеры имели только часть из этих свойств). Построен в 1946 году по заказу Армии США в Лаборатории баллистических исследований для расчётов таблиц стрельбы. Запущен 14 февраля 1946 года.

Архитектуру компьютера разработали в 1943 году Джон Преспер Экерт и Джон Уильям Мокли, учёные из Университета Пенсильвании. В отличие от созданного в 1941 году немецким инженером Конрадом Цузе комплекса Z3, использовавшего механические реле, в ЭНИАКе в качестве основы компонентной базы применялись вакуумные лампы.

Поколение второе - Транзисторные компьютеры (1955-1964)

1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия.

Во втором поколении компьютеров (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

 

Поколение третье - Интегральные схемы (1965-1974)

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм. Это специально выращенный полупроводниковый кристалл, на котором располагаются транзисторы, соединенные напыленными алюминиевыми проводниками. Кристал помещается в керамический корпус с контактами.

Интегра́льная (микро)схе́ма, чип, микрочи́п— микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус.

Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Поколение четвертое - Большие интегральные схемы.

Вы уже знаете, что электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние - интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. В самом деле, что же можно еще придумать? Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

 

 

Компьютеры пятого поколения

Компьютеры пятого поколения — широкомасштабная  правительственная программа в Японии по развитию компьютерной индустрии и искусственного интеллекта, предпринятая в 1980-е годы. Целью программы было создание «эпохального компьютера» с производительностью суперкомпьютера и мощными функциями искусственного интеллекта. Начало разработок — 1982, конец разработок — 1992, стоимость разработок — 57 млрд ¥ (порядка 500 млн $).

С любых точек зрения проект можно считать абсолютным провалом. За десять лет на разработки было истрачено более 50 млрд ¥, и программа завершилась, не достигнув цели.

Рабочие станции так и не вышли на рынок, потому что однопроцессорные системы других фирм превосходили их по параметрам, программные системы так и не заработали, появление Интернета сделало все идеи проекта безнадёжно устаревшими.

 

 


24.01.2015; 19:13
хиты: 113
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь