пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Аспирантура:
» История и философия науки
X семестр:
» ФТП
VI семестр:
» Методы оптимизации
V Семестр:
» УМФ
III семестр:
» Матан
» Физика
» ФАН Кол1
» ФАН Кол2
» ФАН экзамен
I семестр:
» Матан

Точки разрыва и их классификация

: 1-го рода: Такой точкой разрыва называют точку разрыва, если в этой точке существуют и конечны оба односторонних предела. Если пределы равны, то точка устранимого разрыва. Если не равны, то функция имеет скачок в точке x0 равный d=lim(x->x0-0)fx-lim(x->x0+0)fx. 2-го рода: если хотя бы один из односторонних пределов равен inf или несуществует. Для того, чтобы определить функцию по непрерывность нужно значение функции в точке разрыва положить равным пределу функции в этой точке. Монотонные функции имеют точки разрыва только первого рода. Теорема: Условие непрерывности монотонной функции: Если область определения функции ханимает некоторый промежуток, то эта функция непрерывна. Верно и обратное. Док-во: Возьмем х0 не являющейся правым концом промежутка, докажем непрерывность функции справа. Возьмем e на столько малым, чтобы Y1=y0+e тоже было внутри промежутка. Тогда найдется f(x1)=y1 При этом x1>x0. Положим б=x1-x0, так что x1=x0+б, Теперь 0<x-x0<б или x0<x<x1. => y0<f(x)<y1 0<f(x)-f(x0)<e => lim(x->x0+0)f(x)=f(x0)


09.01.2015; 19:51
хиты: 532
рейтинг:0
Точные науки
математика
математический анализ
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь