{42}
а) метиламин
В молекуле метиламина все связи ковалентные полярные. Азот имеет неподеленную пару электронов, с помощью которой притягивает катион Н из воды и кислоты, проявляя основные свойства.
б) Взаимодействие с водой ; образованием основания:
гидроксид метиламмония
Взаимодействие с кислотой с образованием соли:
хлорид метиламмония
Электроотрицательность азота в метиламине выше, чем в аммиаке и анилине, поэтому он является более сильным основанием, чем анилин и аммиак в растворе. Это объясняется влиянием метила и бензольного кольца на функциональную группу NH2(показано на формулах).
{43}
Взаимодействие с азотистой кислотой
Азотистая кислота HNO2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO2, как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:
KNO2 + HCl ® НNO2 + KCl
или NO2- + H+ ® НNO2
Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.
- Первичные алифатические амины c HNO2 образуют спирты:
R-NH2 + HNO2 ® R-OH + N2 + H2O
- Первичные ароматические амины при повышенной температуре реагируют аналогично, образуя фенолы. При низкой температуре (около 0° С) реакция идет иначе (см. ниже, раздел 2.4).
- Вторичные амины (алифатические и ароматические) под действием HNO2 превращаются в нитрозосоединения (вещества с характерным запахом):
R2NH + H-O-N=O ® R2N-N=O + H2O
алкилнитрозамин
- Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения.
{46}
.Строение и взаимные превращения пятичленных гетероциклов:
Пиррол, фуран и тиофен могут быть отнесены к ароматическим соединениям, так как их молекулы содержат циклическую сопряженную систему, включающую 6 p-электронов. Они являются электронными аналогами ароматического карбоцикла – циклопентадиенил-аниона. В молекуле пиррола атом азота находится в состоянии sp2-гибридизации и образует три s-связи, лежащие в плоскости кольца. р-Орбиталь атома азота со свободной парой электронов взаимодействует с четырьмя р-орбиталями атомов углерода с образованием циклической p-системы, содержащей секстет p-электронов.
Атом азота в пирроле действует как электронодонор по мезомерному механизму, поэтому p-электронная плотность на атомах углерода пиррола повышена по сравнению с бензолом. Такие гетероциклы называют p-избыточными (на пять атомов приходится шесть p-электронов).
Гетероциклы фуран и тиофен имеют аналогичную p-систему, в которой одна из неподеленных пар электронов кислорода и серы соответственно участвуют в образовании ароматического секстета. Фуран и тиофен также относятся к p-избыточными гетероциклическим соединениям.
Подтверждением ароматического характера пиррола, фурана и тиофена является их плоское строение и длины связей, которые имеют промежуточные значения между обычными простыми и двойными связями С-С, C-N, C-O и C-S. Эмпирические оценки и квантово-механические расчеты показывают, что пятичленные гетероциклы стабилизированы за счет делокализации p-электронов, однако энергия делокализации у них ниже, чем у бензола. В наименьшей степени стабилизирован фуран, который, таким образом, обладает меньшей ароматичностью, чем пиррол и тиофен.
Молекулы пиррола, фурана и тиофена полярны. У пиррола дипольный момент направлен от атома азота на цикл. У фурана и тиофена отрицательный конец диполя, напротив, находится на гетероатоме.
5. Взаимные превращения пятичленных гетероциклов с одним гетероатомом. Советский химик-органик Ю.К. Юрьев в 1936 г., учитывая высокую реакционную способность гетероциклов, показал возможность взаимных превращений фурана, пиррола и тиофена.
Методы идентификации пятичленных гетероциклов с одним гетероатомом
Для обнаружения фурана и пиррола применяют очень простой и доступный метод — окрашивание сосновой лучины: сосновая лучинка, смоченная хлороводородной кислотой и фураном, окрашивается в интенсивно-зеленый цвет; в парах пиррола она приобретает ярко-красную окраску.
Тиофен открывают индофениновой пробой: смесь изатина с концентрированной серной кислотой в присутствии даже следов тиофена окрашивается в синий цвет.
{47}
ХИМИЧЕСКИЕ СВОЙСТВА ПИРРОЛА, ФУРАНА И ТИОФЕНА.
Как уже было отмечено, по электронному строению пиррол, фуран и тиофен являются ароматическими соединениями и, как следствие, реакции электрофильного замещения для них характерны в большей степени, чем присоединения. При этом их реакционная способность изменяется в последовательности: фуран > пиррол > тиофен > бензол. Повышенная реакционная способность этих соединений по сравнению с бензолом связана с положительным мезомерным эффектом гетероатома, который, с одной стороны, приводит к появлению частичного отрицательного заряда на атомах углерода в составе гетероцикла, обуславливающего большее сродство к электрофилу, а с другой стороны, приводит к более эффективной стабилизации катионного интермедиата этой реакции – s комплекса и, следовательно, к снижению энергии переходного состояния реакции (см. схему внизу).
Поскольку пиррол и фуран неустойчивы в кислых средах, реакции электрофильного замещения для них проводят в существенно более мягких условиях, чем обычно используются для бензола. Тиофен более устойчив в кислой среде, и для его превращений могут быть использованы реагенты, являющиеся сильными кислотами.
Электрофильное замещение для фурана, пиррола и тиофена протекает преимущественно в положение 2 (a-положение), поскольку возникающий при этом s-комплекс обладает более низкой энергией вследствие более эффективной резонансной стабилизации, чем s-комплекс, образующийся в результате электрофильной атаки по положению 3 (b-положению). Пониженная энергия s-комплекса, образующегося в случае атаки по a-положению (I) по сравнению с энергией s-комплекса (II) приводит к уменьшению активационного барьера реакции в этом направлении, что и обуславливает как кинетическую, так и термодинамическую предпочтительность образования продуктов замещения по a-положению.