де — температура нагрівача,
— температура охолоджувача.
Фазові перетворення[ред. • ред. код]
При переходах речовин із одного аргегатного стану в інший, виділяється або поглинається прихована теплота. Фазові переходи розділяють на дві категорії: при фазових переходах першого роду значення термодинамічних потенціалів змінюються стрибком, при фазових переходах другого роду стрибком змінюються похідні від термодинамічних потенціалів, а самі термодинамічні потенціали залишаються неперервними функціями своїх аргументів.
Правило фаз визначає можливість співіснування різних агрегатних станів речовин. Для однокомпонентної речовини водночас може існувати максимум три фази — таке відбувається в потрійній точці. Для багатокомпонентних речовин, наприклад сплавів, одночасно може існувати більше фаз. Криві співіснування фаз задаютьсяфазовими діаграмами.
Принцип Лешательє-Брауна стверджує те, що рівноважна термодинамічна система у відповіднь на зовнішню дію змінюється таким чином, щоб зменшити результат цієї дії. Принцип Лешательє-Брауна допомагає також при вивченні зміни рівноважного стану в системах, в яких можливі хімічні реакції.
Абсолютна шкала температур[ред. • ред. код]
Температурні шкали Фаренгейта і Цельсія обирали за реперні точки температури певних процесів, наприклад, температуру замерзання і кипіння води при нормальних умовах (певному значенні тиску). Потреба в точніших вимірюваннях призвела до вдосконалення температурної шкали. Існує найнижча можлива температура, яку називають абсолютним нулем температури. При температурі абсолютного нуля будь-який тепловий рух в тілах припиняється. Розроблена лордом Кельвіном температурна шкала була вибрана так, що температура потрійної точки води становила 273.16 градуса. При такій градації величина градуса Кельвіназбігається з величиною градуса Цельсія. Ця шкала температур отримала назву абсолютної. Абсолютна шкала температур використовується в наукових статтях, хоча в повсякденному житті шкала Цельсія зручніша.
При наближенні температури до абсолютного нуля фізичні властивості термодинамічних систем змінюються. Третій закон термодинаміки (теорема Нернста) стверджує те, що при нульовій температурі ентропія термодинамічної системи має мінімальне значення, нульове для хімічно-впорядкованих систем. Нульове значення має також теплоємність.
Термодинаміка і статистична фізика[ред. • ред. код]
Під кінець XIX-го століття отримали підтвердження гіпотези про атомну будову речовин. Стало зрозумілим, що температура тіл пов'язана із хаотичним тепловим рухоматомів. Виникла нова область теоретичних досліджень — статистична механіка, яка дозовлила побудувати мікроскопічну атомарну теорію багатьох термодинамічних явищ. В основі статистичної механіки лежить припущення Больцмана про те, що ентропія пропорційна логарифму числа мікроскопічних станів, яким може реалізуватися даний макроскопічний стан: