Реальные пассивные элементы электрических цепей обладают как сопротивлением R, так и индуктивностью L, и емкостью C. Однако во многих случаях некоторыми характеристиками элемента можно пренебречь из-за их незначительности по сравнению с более значимым. То есть у резистора можно пренебречь индуктивностью и ёмкостью, у катушки индуктивности можно пренебречь сопротивлением и ёмкостью, а у конденсатора можно пренебречь сопротивлением и индуктивностью. Такие элементы электрических цепей называются идеальными, и они используются как для представления реальных элементов, так и для составления схем их замещения в расчётных схемах. В дальнейшем рассмотрим идеальные пассивные элементы электрических цепей.
Резистор – это элемент электрической цепи, преобразующий электрическую энергию в другие виды энергии (тепловую, механическую, световую, химическую). Из определения видно, что резистором на схеме электрической цепи можно обозначать любой элемент, потребляющий активную энергию, мощность которой может быть рассчитана по формулам:
где R – сопротивление резистора, измеряемое в Омах, R = const (для линейных резисторов);
U – действующее значение приложенного к резистору напряжения (В);
I – протекающий по резистору ток (А).
Математическая модель резистора
Ur=Ri
Идеальная катушка индуктивности – это элемент электрической цепи, запасающий электрическую энергию в магнитном поле, которую может полностью возвратить в последующем. Поэтому идеальная катушка индуктивности активную энергию не потребляет, и её активная мощность равна нулю
(P = 0 — для идеальной катушки).
Математическая модель идеальной катушки индуктивности отражает то, что приложенное к ней напряжение uLуравновешивается ЭДС самоиндукции e.
где L – индуктивность катушки, измеряемая в Генри (Гн).
На переменном токе катушка обладает индуктивным сопротивлением
XL= ωL = 2πfL (Ом)
Конденсатор – это элемент электрической цепи, запасающий электрическую энергию в электрическом поле, которую может полностью возвратить в последующем. Поэтому конденсатор активную энергию не потребляет, и его активная мощность равна нулю (P = 0).
Математическая модель конденсатора
где С – ёмкость конденсатора, измеряемая в Фарадах (Ф) или в микрофарадах(1 мкФ = 10 -6 Ф).