Живые организмы в течение S-фазы клеточного цикла, которая предшествует делению клетки, удваивают содержание ДНК таким образом, что каждая дочерняя клетка после деления получает ДНК, идентичную родительской клетке. Процесс удвоения ДНК называют репликацией. При репликации каждая цепь родительской ДНК служит матрицей для синтеза новой комплементарной цепи. Причем матрица воспроизводится на всем ее протяжении. Вновь синтезированная ДНК имеет одну исходную (родительскую) и одну вновь синтезированную (дочернюю) цепь (рис.5). Субстратами для синтеза дочерней цепи служат дезоксиНТФ, для репликации необходимы ферменты: топоизомераза, хеликаза, праймаза, ДНК-полимераза, ДНК-лигаза. Поскольку ДНК в клетке находится в суперспирализованном состоянии, а матрицей служат одиночные цепи, то сначала необходимо подготовить матрицу. Это делают ферменты топоизомераза и хеликаза. Топоизомераза раскручивает суперспираль, освобождает ее от белков и превращает в дуплекс. Хеликаза превращает дуплекс в одиночные цепи. В синтезе дочерней цепи участвует ДНК-полимераза, но она может лишь удлинять уже существующие цепи. Поэтому сначала при участии праймазы образуется «затравка» или праймер, представляющий небольшой фрагмент РНК, к которому ДНК-полимераза по принципу комплементарности начинает пришивать дезоксиНМФ, строя дочернюю цепь. Синтез дочерней цепи начинается с 5`- конца. При этом одна дочерняя цепь синтезируется непрерывно, а другая в виде фрагментов, которые затем сшивает ДНК-лигаза.
Регуляция репликации и клеточного цикла.
- Циклины и циклин-зависимые протеинкиназы. Существует связь репликации с клеточным циклом. Биосинтез ДНК происходит в синтетическую фазу клеточного цикла. Клеточный цикл регулируется: в конце фазы G1 есть точка рестрикции (задержки), в которой снимается ингибирование и наступает переход фазы G1 в фазу S, т.е. начинается цикл. В конце S-фазы клетка получает сигнал для перехода в фазу G2. В конце фазы G2 есть точка, в которой запускается митоз.
- Продукты протоонкогенов и антионкогенов. Протоонкогены - это гены, способствующие пролиферации и тормозящие дифференцировку; антионкогены - это гены, способствующие дифференцировке и тормозящие пролиферацию. Соотношение экспрессии этих генов определяет одну из двух главных клеточных программ.
- Факторы роста клеток (ФРК) с рецепторами, ретиноат (ретиноевая кислота) и кальцитриол. Ретиноат снижает процессы пролиферации и увеличивает дифференцировку. Большинство ФРК через свои рецепторы активируют процессы пролиферации и снижают дифференцировку. Кальцитриол увеличивает дифференцировку и снижает пролиферацию гемопоэтических клеток и клеток некоторых опухолей.
Под воздействием различных факторов могут происходить изменения в генетической информации, при этом нарушаются нуклеотидные последовательности в ДНК – возникают мутации. Факторы, вызывающие мутации, называют мутагенами. Некоторые из них могут способствовать канцерогенезу.Они могут быть физическими (излучения, высокая температура), химическими (прооксиданты, алкиляторы) и биологическими (вирусы, бактерии, глисты). Замена одного нуклеотида другим может привести к синтезу белка, в котором одна аминокислота заменена другой. В большинстве случаев нарушение генетической информации приводит к протеинопатиям, при которых нарушен синтез специфических белков (при серповидно-клеточной анемии синтезируется дефектный HbS, в результате чего эритроциты приобретают измененную форму, что приводит к нарушению транспорта кислорода). Если эти белки обладают ферментативной активностью, то такие протеинопатии называют энзимопатиями.
Процесс, позволяющий живым организмам восстанавливать повреждения, возникающие в ДНК, называют репарацией. Все репарационные механизмы основаны на том, что ДНК –двухцепочечная молекула, т.е. в клетке есть две копии генетической информации. Если нуклеотидная последовательность одной из двух цепей оказывается поврежденной, информацию можно восстановить, так как вторая (комплементарная) цепь сохранена. Повреждения, затрагивающие обе цепи ДНК, при которых нарушается структура нуклеотидов комплементарной пары, не репарируются. При возникновении ошибки из цепи ДНК вырезается поврежденный участок, на его месте образуется брешь, на месте которой ДНК-полимераза достраивает цепь ДНК, а ДНК-лигаза «пришивает» синтезированный фрагмент к цепи ДНК. Репарация необходима для сохранения генетического материала на протяжении всей жизни. Нарушение репарационных систем могут быть причиной многих наследственных болезней, например, пигментной ксеродермы, при которой появляется сверхчувствительность к ультрафиолету и в 1500 раз возрастает риск рака кожи.