Биологические функции фермента связаны с наличием в его структуре активного центра. Вещество, взаимодействующее с ферментом, называется субстратом. Тогда активный центр фермента – это место на его поверхности, где происходит связывание и каталитическое превращение субстрата. В активном центре выделяют участок связывания, который обеспечивает субстратную специфичность, и каталитический участок, который осуществляет химическое превращение субстрата. Однако, эти участки не всегда имеют четкое пространственное разделение и иногда могут «перекрываться». Активный центр формируется в третичной структуре и состоит из нескольких аминокислотных остатков, которые оказались сближенными при формировании третичной структуры, в то время как в первичной структуре эти аминокислотные остатки могут быть удалены друг от друга на значительное расстояние. У большинства ферментов в состав активного центра (помимо аминокислотных остатков) входит еще небелковый компонент – кофактор. Белковая часть молекулы фермента называют апоферментом, а комплекс апофермента и кофактора – холоферментом. В роли кофакторов могут выступать ионы металлов и органические соединения – чаще всего производные витаминов. Их называют коферментами (табл. 1).
Апофермент обеспечивает специфичность действия и отвечает за выбор типа химического превращения субстрата, а кофермент обычно участвует в переносефункциональных групп. Один и тот же кофермент, взаимодействуя с различными апоферментами, может участвовать в разных превращениях субстрата.
Коферменты
№ |
Кофермент |
Витамин |
Основная функция |
.1 |
Тиаминпирофосфат |
В1 – тиамин |
Декарбоксилирование a-кетокислот |
22 |
НАД – никотинамид-адениндинуклеотид |
РР – никотинат |
Перенос Н |
33 |
НАДФ – НАД-фосфат |
–//– |
–//– |
34 |
ФМН – флавинмононук-леотид |
В2 – рибофлавин |
–//– |
35 |
ФАД – флавинаденин-динуклеотид |
–//– |
–//– |
36 |
КоQ (убихинон) |
–– |
–//– |
77 |
Липоевая кислота |
–– |
–//– |
88 |
Пиридоксальфосфат |
В6 – пиридоксин |
Перенос NH2, декарбоксилирование |
99 |
Биотин |
Н – биотин |
Присоединение СО2 |
110 |
Тетрагидрофолат |
Фолиевая кислота |
Перенос С1 |
111 |
КоА – кофермент ацилирования |
Пантотеновая кислота |
Перенос ацилов |
112 |
Кобаламины |
В12 – кобаламины |
Перенос С1, изомеризация |
113 |
ГЕМ |
–– |
Перенос электронов |
114 |
Нафтогидрохиноны |
К – нафтогидрохиноны |
g-карбоксилирование глутамата |
Любая ферментативная реакция протекает в два этапа. Сначала в активном центре субстрат при помощи нековалентных связей взаимодействует с ферментом, формируя фермент-субстратный комплекс. В каталитическом участке субстрат претерпевает химическое превращение в продукт, который затем освобождается из активного центра фермента. Схематично процесс катализа можно представить следующим уравнением:
Е + S<->ES<->EP->E + Р, (где Е– фермент, S – субстрат, Р – продукт)
Добавочную группу, прочно связанную, не отделяемую от белковой части, называют простетической группой; в отличие от этого добавочную группу, легко отделяющуюся от апофермента и способную к самостоятельному существованию, обычно именуют коферментом.
Субстрат (S) — вещество, химические превращения которого в продукт (Р) катализирует фермент (Е).
S + E ——> P, фермент снижает энергию активации; за счет этого реакция ускоряется.
Активный центр фермента — участок поверхности молекулы фермента, непосредственно взаимодействующий с молекулой субстрата. Образован из остатков аминокислот, находящихся в составе различных участков полипептидной цепи или различных полипептидных цепей, пространственно сближенных. Возникает на уровне третичной структуры белка-фермента.
В его пределах различают три области:
1) каталитический центр — область (зона) активного центра фермента, непосредственно участвующая в химических преобразованиях субстрата. Формируется за счет радикалов 2–3 аминокислот, расположенных в разных местах полипептидной цепи фермента, но пространственно сближенных между собой за счет изгибов этой цепи. Если фермент — сложный белок, то в формировании каталитического центра нередко участвует простетическая группа молекулы фермента — кофермент (например, все водорастворимые витамины и жирорастворимый витамин K);
2) адсорбционный центр — участок активного центра молекулы фермента, на котором происходит сорбция (связывание) молекулы субстрата. Формируется 1, 2, чаще 3 радикалами аминокислот, расположенными рядом с каталитическим центром. Главная функция — связывание молекулы субстрата и передача этой молекулы каталитическому центру в наиболее удобном положении (для каталитического центра). Сорбция происходит только за счет слабых типов связей и потому обратима. По мере формирования этих связей происходит конформационная перестройка адсорбционного центра, которая приводит к более тесному сближению субстрата и активного центра фермента, более точному соответствию между их пространственными конфигурациями. Именно структура адсорбционного центра определяет субстратную специфичность фермента;
3) аллостерические центры — такие участки молекулы фермента вне его активного центра, которые способны связываться слабыми типами связей (значит — обратимо) с тем или иным веществом (лигандом). Это связывание приводит к такой конформационной перестройке молекулы фермента, которая распространяется и на активный центр, облегчая либо затрудняя (замедляя) его работу. Соответственно такие вещества называются аллостерическими активаторами, или аллостерическими ингибиторами данного фермента. Аллостерические центры найдены не у всех ферментов.
1 класс––оксидоредуктазы. Катализируют различные окислительно-восстановительные реакции. Сюда входят подклассы дегидрогеназ (отщепляющих атомы водорода), редуктаз (присоединяющих атомы водорода), оксигеназ (внедряющих кислород в субстрат) и др.
2 класс –-трансферазы. Катализируют перенос функциональных групп от одного субстрата на другой. Сюда относят аминотрансферазы (переносят аминогруппу), метилтрансферазы (метильную группу), киназы (переносят остаток фосфорной кислоты от АТФ).
3 класс –-гидролазы.Катализируют реакции гидролиза (расщепления ковалентной связи с присоединением молекулы воды по месту разрыва). Сюда относят эстеразы, гликозидазы, пептидазы.
4 класс ––лиазы. Отщепляют от субстратов негидролитическим путем определенную группу, например, декарбоксилазы, альдолазы.
5 класс –-изомеразы. Катализируют различные внутримолекулярные превращения (изомеразы, мутазы – в том случае, когда изомеризация состоит во внутримолекулярном переносе какой-либо группы).
6 класс –- лигазы (синтетазы).Катализируют реакции присоединения друг к другу двух молекул с образованием ковалентной связи, этот процесс сопряжен с затратой энергии АТФ (РНК-полимераза).
мех. д-я
Различают три стадии в механизме ферментативного катализа:
образование фермент-субстратного комплекса;
образование комплекса «фермент-продукт реакции»;
отщепление продуктов реакции от фермента.
Первая стадия фермент отличается от белка наличием АЦ — участка, с помощью которого фермент соединяется с субстратом и ускоряет реакцию. Долгое время считали, что между ферментом и субстратом имеется точное соответствие («ключ к замку»). Однако сейчас принято считать, что АЦ фермента приспосабливается к субстрату в ходе реакции (теория вынужденного соответствия). В АЦ имеются якорные участки, за счет которых субстрат закрепляется. Каталитический участок АЦ ответственен за тип ускоряемой реакции
Вторая стадия – функционально-активные группы АЦ фермента действуют на субстрат, дестабилизируя связи в нем, вызывая изменение конфигурации субстрата, поляризацию его молекулы, растяжение связей и т.д. Это приводит к химическому преобразованию субстрата (т.е. к протеканию реакции) и образованию продуктов реакции, которые некоторое время находятся в связи с ферментом
Третья стадия – от нее зависит скорость реакции. Происходит отделение фермента от продуктов реакции