В Риме семь чисел обозначают буквами. 1-I, 5-V, 10-X, 50- L,100-C, 500-D, 1000-M
Двоичная система счисления:
В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи.
Восьмеричная система счисления.
В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает - как и в десятичном числе - просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т.д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмиричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.
Шестнадцатиричная система счисления.
Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем - 16 (десятичное), в следующем - 256 (десятичное) и т.д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное).
- Перевод чисел из двоичной, восьмеричной, шестнадцатеричной в десятичную.
ПЕРЕВОД ЧИСЕЛ ИЗ ДВОИЧНОЙ СИСТЕМЫ В ДЕСЯТИЧНУЮ:
Для примера переведем число 11011012 из двоичной системы счисления (далее СС) в десятичную. Нижний индекс 2 указывает, что число 1101101 записано в двоичной системе счисления.
1.Записываем число, которое необходимо перевести из двоичной системы счисления и справа налево над каждой цифрой числа ставим степень, начиная с нулевой:
2.Теперь умножаем каждую цифру числа на 2 в степени, которая стоит над числом и складываем результаты – получаем значение числа в десятичной системе счисления:
1*26 + 1*25 + 0*24 + 1*23 + 1*22 + 0*11 + 1*20 = 64 + 32 + 0 + 8 + 4 + 0 + 1 = 10910
ПЕРЕВОД ЧИСЕЛ ИЗ ВОСЬМЕРИЧНОЙ СИСТЕМЫ В ДЕСЯТИЧНУЮ:
Для перевода восьмеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания восьмеричной системы счисления на соответствующие цифры в разрядах восьмеричного числа.
Например, требуется перевести восьмеричное число 2357 в десятичное. В этом числе 4 цифры и 4 разряда ( разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с уже известным нам правилом представим его в виде суммы степеней с основанием 8:
23578 = (2·83)+(3·82)+(5·81)+(7·80) = 2·512 + 3·64 + 5·8 + 7·1 = 126310
ПЕРЕВОД ЧИСЕЛ ИЗ ШЕСТНАДЦАТЕРИЧНОЙ СИСТЕМЫ В ДЕСЯТИЧНУЮ:
В Риме семь чисел обозначают буквами. 1-I, 5-V, 10-X, 50- L,100-C, 500-D, 1000-M
основанием является число16, и правило перевода в данном случае может быть сформулировано в следующем виде:
Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.
Например, требуется перевести шестнадцатеричное число F45ED23C в десятичное. В этом числе 8 цифр и 8 разрядов (помним, что разряды считаются, начиная с нулевого, которому соответствует младший бит). В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:
F45ED23C16 = (15·167)+(4·166)+(5·165)+(14·164)+(13·163)+(2·162)+(3·161)+(12·160) = 409985490810