Сульфат используется в качестве источника серы почти всеми растениями и микроорганизмами. Сульфат при ассимиляции восстанавливается, чтобы сера могла включиться в органические соединения, так как в живых организмах сера встречается почти исключительно в восстановленной форме в виде сульфгидрильных (-SH) или дисульфидных (-S-S-) групп. В обоих случаях ассимилируется ровно столько питательных веществ, содержащих серу, сколько их необходимо для роста организма, поэтому никакие восстановленные продукты метаболизма серы не выделяются в окружающую среду. В результате биосинтеза сера включается в основном в состав серосодержащих аминокислот: цистин, цистеин, метионин. Вовлечение сульфатов в состав серосодержащих органических веществ носит название ассимиляционной сульфатредукции.
Превращение органических соединений серы с образованием H2S. Для живых организмов сера доступна в основном в форме растворимых сульфатов или восстановленных органических соединений серы.При минерализации органических серосодержащих соединений сера освобождается в неорганической восстановленной форме в виде H2S. В освобождении серы из органических серосодержащих соединений (продукты метаболизма живых существ, отмершие растительные и животные остатки) принимают участие сапрофитные микроорганизмы, способные к аммонификации. При аммонификации серосодержащие белки и нуклеиновые кислоты разлагаются с образованием СО2, мочевины, органических кислот, аминов и, что важно для цикла серы, H2S и меркаптанов (тиоспирты). Меркаптаны в аэробных условиях также окисляются с выделением H2S.Разрушение белков микроорганизмами начинается как внеклеточный процесс. При этом белки гидролизуются протолитическими экзоферментами до более мелких молекул, способных проникать внутрь клетки и расщепляться внутриклеточными протеазами до аминокислот, которые могут подвергаться дальнейшему расщеплению.
Прямое образование H2S из сульфата и элементной серы. Процессы образования в биосфере сероводорода связывают в основном с деятельностью сульфатредуцирующих бактерий, имеющих большое значение для глобального круговорота серы. Сульфатредуцирующие бактерии осуществляют диссимиляционную сульфатредукцию, представляющую собой анаэробное дыхание, при котором сульфат служит конечным акцептором электронов (вместо кислорода) при окислении органических веществ или молекулярного водорода. Поэтому энергетический тип обмена у сульфатредуцирующих бактерий часто называют сульфатным дыханием. Схематически процесс восстановления сульфатов при диссимиляционной сульфатредукции можно представить следующим образом: SO42->SO32->S3O62->S2O32->S2-.
Ферментативная система, участвующая в восстановлении сульфата, состоит из двух частей: первая восстанавливает сульфат в сульфит в АТФ-зависимом процессе, а вторая восстанавливает сульфит в сульфид путем шестиэлектронного переноса. Именно последняя реакция, являясь диссимиляторной, снабжает клетку энергией.
Сульфатредуцирующие бактерии преимущественно облигатные анаэробные бактерии. Геохимическая роль сульфатредуцирующих бактерий чрезвычайно велика, поскольку благодаря их деятельности инертное соединение - сульфат в анаэробной зоне в больших масштабах вовлекается в биологический круговорот серы. Деятельность сульфатредуцирующих бактерий особенно заметна в иле на дне прудов и ручьев, в болотах и вдоль побережья моря. Так как концентрация сульфата в морской воде относительно высока, восстановление сульфата - важный фактор минерализации органического вещества на морских отмелях. Признаками такой минерализации служит запах H2S и черный как смоль ил, в котором протекает этот процесс. Черный цвет ила обусловлен присутствием в нем больших количеств сульфида двухвалентного железа. Некоторые береговые области, где накопление органического вещества ведет к особенно интенсивному восстановлению сульфата, практически безжизненны из-за токсического действия H2S.
Сероводород может образовываться также при восстановлении элементной серы. На сегодня известны два механизма образования сероводорода из молекулярной серы. В первом случае бактерии и археи используют молекулярную серу как акцептор электронов при анаэробном дыхании (диссимиляционная сероредукция), в ходе которого синтезируется АТФ. Диссимиляционная сероредукция - это ферментативный процесс, который осуществляют как мезофильные, так и термофильные прокариоты. Во втором случае микроорганизмы (дрожжи и прокариоты) используют серу лишь для сброса электронов, освобождающихся при брожении (облегченное брожение). Это футильный (холостой) сброс электронов, который не сопровождается синтезом АТФ.
Поскольку такое восстановление сульфата обладает формальным сходством с дыханием, при котором акцептором водорода служит кислород, принято говорить о сульфатном дыхании, или о диссимиляционной сульфатредукци. Главным продуктом такого процесса является сероводород:
8[Н] + SO*" -» H2S + 2Н20 + 20Н-
Большая часть сероводорода, образующегося в природе, возникает благодаря этой реакции. Сульфатредуцирующие бактерии являются, в отличие от нитратредуцирующих, облигатными анаэробами, т.е. нуждаются в строго анаэробных условиях.
Гидротермальные сообщества В 1914 г. датское исследовательское судно «Сибога» во время глубоководных тралений вблизи Зондского архипелага добыло несколько экземпляров невзрачных морских червеобразных организмов, которые обитали в длинных тонких трубочках. Последующие морские экспедиции приносили новые находки подобных животных, и постепенно, зоологи стали осознавать, что эти организмы сильно отличаются от многощетинковых червей. в 1944 г. профессор Московского университета В. Н. Беклемишев выделил их в отдельный тип — самую крупную категорию в систематике животного царства. Название этого типа Pogonophora. эти организмы не имели ни рта, ни кишечника, и следовательно, способ питания погонофор оставался загадкой.
со второй половины 70-ых годов, в так называемых рифтовых зонах океана были найдены представители новой группы погонофор — вестиментиферы. Рифтовые зоны — это система трещин, возникших в участках стыка литосферных плит, из которых состоит верхняя мантия Земли. В таких местах сквозь толщу океанической коры просачиваются горячие газы, нагревающие воду до температуры 300–400 градусов (при высоком давлении на больших глубинах вода не кипит даже при температуре в несколько сот градусов). В этой воде растворено много сероводорода и сульфидов металлов (железа, цинка, никеля, меди), которые окрашивают ее в черный цвет. Концентрации металлов в горячей воде черных курильщиков превышают таковые в обычной морской воде в 100 млн раз. Струи этого горячего раствора смешиваются с холодной водой придонных слоев океана, охлаждаются, сульфиды выпадают в осадок и формируют особые конические постройки высотой несколько десятков метров — черные курильщики. Так их называют из-за мощных потоков горячего сульфидного раствора, напоминающих клубы черного дыма.
На снимках было видно, что склоны черных курильщиков почти до самых вершин покрыты толстым слоем бактерий (сплетения миллиардов бактериальных клеток образуют так называемые маты), способных выживать при температуре до 120 градусов. В отдалении от устья курильщиков, там где температура опускается ниже 40 градусов, на уступах курильщиков были видны сплетения белых трубок гигантских (до 2,5 м) червей с ярко алыми щупальцами. В зарослях трубок ползали крабы, рядом плавали рыбы, в расселинах сидели крупные (20–30 см) двустворчатые моллюски, попадались осьминоги, словом, жизнь кипела.
У вестиментифер (так же как у погонофор) во взрослом состоянии нет рта и кишечника. По оси туловищного отдела вестиментифер проходит массивный клеточный тяж, который сначала считался запасающим органом и был назван «трофосома». Электронно-микроскопические исследования показали, что крупные клетки трофосомы содержат множество вакуолей с бактериями. Бактерии вестиментифер принадлежат к группе сероводородокисляющих бактерий. Они окисляют сероводород до серы (а потом до серной кислоты, нейтрализуемой карбонатами), и полученную при этом энергию используют для синтеза органических веществ из углекислого газа и воды. Этот процесс носит название хемосинтеза и характерен для многих видов свободноживущих бактерий, обитающих там, где в окружающей среде много сероводорода и есть кислород.
В гидротермальных оазисах сероводород поступает из черных курильщиков, а кислород — за счет подсоса холодной и богатой кислородом глубинной воды, окружающей зоны гидротермальных источников. Как оказалось, оба вещества транспортируются кровеносной системой вестиментифер. Сложная кровеносная система вестиментифер содержит две системы капилляров: одну в щупальцах, а другую в трофосоме. Сеть капилляров кровеносной системы проникает непосредственно внутрь клеток трофосомы и при этом так густа, что любую бактерию от ближайшего капилляра отделяет не более двух других бактерий. Гемоглобин вестиментифер соединяется и с кислородом и с сероводородом, при этом сероводород обратимо связывается с белковой частью молекулы, а кислород — с гемом. Впрочем, при недостатке кислорода бактерии способны получать его, переводя нитраты, которыми богаты глубинные воды океана, в нитриты. Бактерии, защищенные внутри организма хозяина от неблагоприятных воздействий, получают от него сероводород и кислород. За счет самопереваривания части клеток трофосомы вместе с бактериями хозяин получает органические вещества, которые служат единственным источником питания вестиментифер. Таким образом, сожительство хемосинтезирующих бактерий и вестиментифер является взаимовыгодным симбиозом.
Открытие симбиотрофного (обеспечиваемого симбионтами) питания у вестиментифер, натолкнуло исследователей на мысль, что таким же способом могут питаться и типичные погонофоры. личинки вестиментифер имеют нормально развитый рот и кишечник. В течение нескольких суток они плавают в толще воды с помощью венчика ресничек, затем опускаются на субстрат и ползают по поверхности грунта. Они заглатывают хемосинтезирующих бактерий из внешней среды, заражаются ими, после чего рот и анус у молодых вестиментифер редуцируются, а кишечник превращается в орган бактериального питания — трофосому. Недавние исследования показали, что личинки типичных погонофор тоже имеют нормальный рот и кишечник и заражаются симбионтами (метанокисляющими бактериями) из внешней среды. Любопытно, что трофосома погонофор сохраняет просвет (недаром же ее раньше называли срединным каналом) и больше похожа на кишечник, чем сильно видоизмененная трофосома вестиментифер.
В сообществах черных курильщиков источник органического вещества другой — это хемосинтезирующие бактерии. Они взвешены в толще воды, образуют бактериальные маты на склонах курильщиков и живут как симбионты внутри вестиментифер и некоторых других организмов. Все остальное население гидротермальных оазисов питается за счет этих бактерий. Громадная хемосинтетическая продукция обеспечивает биомассу гидротермальных сообществ в десятки тысяч раз превышающую таковую на соседних участках морского дна. При этом вестиментиферы (вместе с населяющими их бактериями) выступают как автотрофные члены сообщества. Таким образом справедливо назвать вестиментифер «автотрофными животными».
Гидротермальные сообщества — это пример жизни, существующей не за счет солнечной энергии, а за счет тектонической энергии планеты