Угол наклона прямой к оси Ox в фиксированной прямоугольной декартовой системе координат Oxy на плоскости - это угол, отсчитываемый от положительного направления оси Ох до прямой против хода часовой стрелки.
Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю. Таким образом, угол наклона прямой может принимать значения из интервала .
Угловым коэффициентом прямой называется тангенс угла наклона этой прямой.
Угловой коэффициент прямой обычно обозначают буквой k. Тогда по определению .
Положительный угловой коэффициент прямой указывает на возрастание ее графика функции, отрицательный угловой коэффициент – на убывание. Этой теме посвящена статья нахождение промежутков возрастания и убывания функции.
На рисунке показан угол наклона прямой и указано значение углового коэффициента при различных вариантах расположения прямой относительно прямоугольной системы координат.
Уравнение прямой, проходящей через данную точку в данном направлении
Предположим, что прямая проходит через точку M1 (x1,y1) и образует с осью OX угол j. Составим уравнение этой прямой.
Y
Будем искать уравнение прямой в виде уравнения с угловым коэффициентом: y = k · x + b. Угловой коэффициент прямой можно найти, зная угол наклона k = tg j. Возьмем произвольную точку M (x, y), лежащую на этой прямой, и найдем уравнение, связывающее переменные x и y. Так как точки М и M1 лежат на прямой, то их координаты удовлетворяют уравнению прямой:
y = k · x + b,
y1 = k · x1 + b.
Вычитая эти равенства, получим:
y - y1 = k · (x - x1) - уравнение прямой, проходящей через данную точку в данном направлении.
Уравнение прямой, проходящей через две данные точки
Пусть даны точки A(x1;y1) и B(x2;y2). Уравнение прямой, проходящей через точки A(x1;y1) и B(x2;y2) имеет вид:
Решение: Подставляя в уравнение (8) x1=1, y1=2, x2=-1; y2=1 получим:
откуда или 2у-4=х-1, или окончательно х-2у+3=0