Испытания и события.
Выше событие названо случайным, если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить «совокупность условий S осуществлена», будем говорить кратко: «произведено испытание». Таким образом, событие будет рассматриваться как результат испытания.
Пример 1. Стрелок стреляет по мишени, разделенной на четыре области. Выстрел — это испытание. Попадание в определенную область мишени — событие.
Пример 2. В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появление шара определенного цвета — событие.
Операции над событиями и их свойства
Событием называется любой факт, который в результате опыта может произойти или не произойти. Примеры случайных событий: выпадение шестерки при подбрасывании игральной кости, отказ технического устройства, искажение сообщения при передаче его по каналу связи. С событиями связываются некоторые числа, характеризующие степень объективной возможности появления этих событий, называемые вероятностями событий.
Достоверным называется событие W, которое происходит в каждом опыте.
Невозможным называется событие Æ, которое в результате опыта произойти не может.
Несовместными называются события, которые в одном опыте не могут произойти одновременно.
Суммой (объединением) двух событий A и B (обозначается A+B, AÈB) называется такое событие, которое заключается в том, что происходит хотя бы одно из событий, т.е. A или B, или оба одновременно.
Произведением (пересечением) двух событий A и B (обозначается A×B, AÇB) называется такое событие, которое заключается в том, что происходят оба события A и B вместе.
Противоположным к событию A называется такое событие , которое заключается в том, что событие A не происходит.
События Ak (k=1, 2, ..., n) образуют полную группу, если они попарно несовместны и в сумме образуют достоверное событие.
При преобразовании выражений можно пользоваться следующими тождествами:
.
Вероятностное пространство
Вероя́тностное простра́нство — понятие, введённое А. Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитиютеории вероятностей как строгой математической дисциплины
Вероятностное пространство — это тройка