пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

I семестр:
» Задачи шиза
» Физиология 2
» шиза
» Кровь
» Патана дистрофии
» Смешанные дистрофии
» Тест патшиза 1
» Нормшиза дыхание
» Нормшиз 3
» Бх
» Пищеварение нормшиз
» Пищеварение нормшиз 2
» аоао
» Кровь патшиз
» Керимов философия
» Печерская В.М 202 ПФ
» Тема 11 : "Физиология обмена веществ и терморегуляция"
» Тема 12 : "Физиология выделительной системы"
» Тема 13 "Клинико-физиологические методы исследования выделительной системы"
» Тема 14 : "Общие адаптации организма"
» Печерская В.М 202 Пед.фак
» тттт
» Тема 11 "Физиология обмена веществ и терморегуляции"
» Шаху
» Тема 12 "Физиология выделительной системы"
» Тема 14 "Общие закономерности адаптации организма"
» Дз Тема 13 "Клинико-физиологические методы исследования выделительной системы"
» Печерская_202_Им_4.11-04.
» Керимов226Гигиена_06.04(Часть 1)
» 9.04.20 Патофизиология аллергических реакций
» 11.04.20 Патофизиология водно-минерального обмена.
» Печерская202ПФимм13-18апреля
» Тема 1 Возрастная физиология
» Тема 2 Возрастная шиза
» 16.04.20 Патофизиология энергетического и углеводного обмена
» 18.04.20 Патофизиология белкового обмена. Нарушения обмена нуклеиновых кислот.
» Печерская202ПФимм20-25апреля
» Печерская202ПФИмм20-25 апреля (2)
» ПечерскаяВМ_202ПФ (3 тема)
» ПечерскаяВМ_202ПФ (4 тема)
» Реактивность
» Реактивность (2)
» Задача 1 Пищеварение в различных отделах жкт.
» Задача 2 Пищеварение в различных отделах жкт.
» Задача 3 Пищеварение в различных отделах жкт.
» Задача 4 Пищеварение в различных отделах жкт.
» Задача 1 Регуляция пищеварения
» Задача 2 Регуляция пищеварения.
» Задача 3 Регуляция пищеварения.
» Задача 4. Регуляция пищеварения.
» Задача 5. Регуляция пищеварения
» Задача 6. Регуляция пищеварения.
» Задача 7. Регуляция пищеварения.
» Задача 1. Физиология обмена веществ.
» Задача 2 Физиология обмена веществ.
» Задача 3 Физиология обмена веществ
» Задача 4 Физиология обмена веществ
» Задача 5 Физиология обмена веществ
» Задача 6 Физиология обмена веществ
» Задача 7 Физиология обмена веществ
» Задача 1 Физиология выделительной системы
» Задача 2 Физиология выделительной системы
» Задача 3 Физиология выделительной системы
» Задача 4 Физиология выделительной системы
» Задача 5 Физиология выделительной системы
» Задача 6 Физиология выделительной системы
» Задача 7 Физиология выделительной системы
» Задача 8 Физиология выделительной системы
» Задача 1 Клинико-физиологические методы
» Задача 2 Клинико-физиологические методы
» Задача 3 Клинико-физиологические методы
» Задача 4 Клинико-физиологические методы
» Задача 1 Общие закономерности адаптации
» Задача 2 Общие закономерности адаптации
» Задача 3 Общие закономерности адаптации
» Задача 4 Общие закономерности адаптации
» Задача 5 Общие закономерности адаптации
» Физиология
» Биохимия модуль
» Патшиз2
» Возрастная физиология модуль 5
» Тема 6 Печерская ВМ 202 Пед.фак

Современное представление о структуре дыхательного центра (А.Н. Миславский). Роль различных отделов ЦНС в регуляции дыхания :

1) В 1885 году Казанский физиолог Н.А. Миславский обнаружил, что в продолговатом мозге находится центр обеспечивающий смену фаз дыхания. Этот бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные - и -нейроны. Первые возбуждаются при вдохе. Одновременно к -респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с -респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того нейронам бульбарного дыхательного центра свойственно явление автоматии. Это их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, а также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гаспинг - длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста - апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов ЦНС в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

2) Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к -респираторным нейронам, которые в свою очередь тормозят -респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких.

Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

2. Роль гуморальных факторов в регуляции дыхания :

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличиваются. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

3. Характеристика специфических и неспецифических рефлексогенных зон, центральных и периферических рецепторов, участвующих в механизмах регуляции дыхания :

Центральные хеморецепторы расположены на вентральной поверхности продолговатого мозга и чувствительны к уровню углекислого газа и водородных ионов спинномозговой жидкости. Обеспечивают возбуждение дыхательных нейронов, т.к. поддерживают постоянный афферентный поток и участвуют в регуляции частоты и глубины дыхания при изменении газового состава спинномозговой жидкости.

Периферические рецепторы локализованы в области бифуркации сонной артерии и дуги аорты в специальных гломусах (клубочках). Афферентные волокна идут в составе блуждающего и языкоглоточного нервов в дыхательный центр. Реагируют на снижение напряжения кислорода, повышение уровня углекислого газа и водородных ионов в плазме крови. Значение: обеспечивают рефлекторное усиление дыхания при изменении газового состава крови.

Вторичночувствующие рецепторы, сосудистые, неадаптирующиеся, всегда активны, увеличивается при изменениях.

4. Понятие о рефлексе Геринга – Брейера.

Рецепторы растяжения легких (РРЛ) – являются наиболее значимым среди всех механорецепторов.

В 1868 г. Геринг и Брейер доказали наличие в легких рецепторов, которые возбуждаются при их растяжении, то есть при вдохе. Они являются чувствительными окончаниями блуждающих нервов, которые направляют свои импульсы в ДЦ.

Геринг и Брейтер раздували легкие и наблюдали прекражение вдоха (инспираторно-тормозной рефлекс).

Таким образом, этот рефлекс способствует смене вдоха на выдох. Он называется рефлексом Геринга-Брейера и является рефлексом саморегуляции дыхания.

При перерезке блуждающих нервов, дыхание становится редким и глубоким, альвеолы расширяются до максимального предела, т.к. вдох не тормозится. В этом случае, смене вдоха на выдох будет способствовать пневмотаксический центр (ПТЦ).

5. Периодическое дыхание, несомненно, часто бывает связано с длительным действием недостатка кислорода на нервные клетки, которые регулируют дыхание. Кислородная недостаточность головного мозга вызывает перевозбуждение, а затем снижение возбудимости дыхательного центра. Дыхание угнетено, прекращается на время, и лишь нарастающая при этом концентрация углекислоты в крови выше нормальных величин вновь возбуждает центр, и появляются дыхательные движения. Легкие вентилируются, выводится из крови избыток углекислоты. Теперь снова падает возбудимость центра, прекращается дыхание и т.д. Это один из механизмов, лежащих в основе периодического дыхания. Оказалось также, что возникновению периодического дыхания способствует торможение коры головного мозга. Считают, что такое волнообразное (периодическое) изменение дыхания отражает развитие запредельного торможения в головном мозгу. Периодическое дыхание нередко сочетается с периодической деятельностью и других физиологических систем при нарушении деятельности мозга.

6. Механизм первого вдоха новорождённого.

Легкие начинают обеспечивать организм кислородом с момента рождения. До этого плод получает 02через плаценту по сосудам пуповины. Во внутриутробном периоде происходит бурное развитие дыхательной системы: формируются воздухоносные пути, альвеолы. Следует отметить, что легкие плода с момента их образования находятся в спавшемся состоянии. Ближе к рождению начинает синтезироваться сурфактант. Установлено, что, еще находясь в организме матери, плод активно тренирует дыхательную мускулатуру: диафрагма и другие дыхательные мышцы периодически сокращаются, имитируя вдох и выдох. Однако околоплодная жидкость при этом не поступает в легкие: голосовая щель у плода находится в сомкнутом состоянии.

После родов поступление кислорода в организм новорожденного прекращается, так как пуповина перевязывается. Концентрация 02в крови плода постепенно уменьшается. В то же время постоянно увеличивается содержание С02, что приводит к закислению внутренней среды организма. Эти изменения регистрируются хеморецепторами дыхательного центра, который расположен в продолговатом мозге. Они сигнализируют об изменении гомеостаза, что ведет к активации дыхательного центра. Последний посылает импульсы к дыхательным мышцам — возникает первый вдох. Голосовая щель раскрывается, и воздух устремляется в нижние дыхательные пути и далее — в альвеолы легких, расправляя их. Первый выдох сопровождается возникновением характерного крика новорожденного. На выдохе альвеолы уже не слипаются, так как этому препятствует сурфактант. У недоношенных детей, как правило, количество сурфактанта недостаточно для обеспечения нормальной вентиляции легких. Поэтому у них после рождения часто наблюдаются различные дыхательные расстройства.

7. Изменение дыхания при физической нагрузке , механизмы этих изменений :

При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15—20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится CO2.

Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем — от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорциональна интенсивности выполняемой работы и потреблению О2 тканями организма.

В момент начала мышечной работы вентиляция быстро увеличивается, однако в начальный период работы не происходит каких-либо существенных изменений рН и газового состава артериальной и смешанной венозной крови.

Уровень вентиляции в первые секунды мышечной активности регулируется сигналами, которые поступают к дыхательному центру из гипоталамуса, мозжечка, лимбической системы и двигательной зоны коры большого мозга. Одновременно активность нейронов дыхательного центра усиливается раздражением проприоцепторов работающих мышц. Довольно быстро первоначальный резкий прирост вентиляции легких сменяется ее плавным подъемом до достаточно устойчивого состояния, или так называемого плато. В период «плато» усиливается транспорт газов через аэрогематический барьер, начинают возбуждаться периферические и центральные хеморецепторы. В этот период к нейрогенным стимулам дыхательного центра присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции в процессе выполняемой работы. При тяжелой физической работе на уровень вентиляции будут влиять также повышение температуры тела, концентрация катехоламинов, артериальная гипоксия и индивидуально лимитирующие факторы биомеханики дыхания.

Состояние «плато» наступает в среднем через 30 с после начала работы или изменения интенсивности уже выполняемой работы. В соответствии с энергетической оптимизацией дыхательного цикла повышение вентиляции при физической нагрузке происходит за счет различного соотношения частоты и глубины дыхания. При очень высокой легочной вентиляции поглощение О2 дыхательными мышцами сильно возрастает. Это обстоятельство ограничивает возможность выполнять предельную физическую нагрузку. Окончание работы вызывает быстрое снижение вентиляции легких до некоторой величины, после которой происходит медленное восстановление дыхания до нормы.

8. При каких обстоятельствах у человека может развиться высотная болезнь, какие изменения происходят в организме, какие компенсаторные механизмы включаются в таких случаях?

Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, и скоротечной потерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности высоте организм страдает не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным. В процессе адаптации к хронической гипоксии выделяют три стадии. На первой, аварийной, компенсация достигается за счет увеличения легочной вентиляции, усиления кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, и выгодный уровень адаптации. В стабильной стадии физиологические показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них. За счет 2,3-фосфоглицерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин, имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает "функциональная эмфизема". Т.е. в дыхание включаются резервные альвеолы и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов.

9. Механизм кессонной болезни. При каких видах деятельности возможна кессонная болезнь? Профилактические и лечебные мероприятия, направленные на коррекцию данного состояния.

 

Гипербарическая оксигенация.

Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание урежается до 2-4 раз в минуту. Вдох укорачивается, а выдох удлиняется и затрудняется. Газообмен в легких немного ускоряется. При обычном атмосферном давлении в плазме крови находится в растворенном состоянии около 1 об.% азота. Чем выше атмосферное давление, тем выше его растворимость, тем больше его накапливается в крови. Увеличивается количество растворенного азота и по мере удлинения времени подводных работ. При быстром снижении давления, например экстренном подъеме водолаза, растворимость азота резко падает. Он переходит в газообразную форму и образует в сосудах пузырьки - эмболы. Они закупоривают просвет мелких сосудов. Возникает газовая эмболия и кровоснабжение тканей нарушается. Развивается кессонная болезнь, сопровождающаяся сильными болями в суставах, костях, мышцах, головной болью ("залом"). Появляются рвота, параличи, пострадавший теряет сознание. Для ее лечения пострадавшего помещают в декомпрессионную камеру, где давление вновь поднимают до полного растворения азота. Затем очень медленно снижают его, чтобы азот успевал выходить через легкие. Профилактика этого состояния проводится путем использования ступенчатой декомпрессии. Т.е. когда водолаза поднимают на поверхность, то через каждые 10 м подъема делают остановки на строго определенное время. Для дыхания на глубине применяют также газовую смесь, в которой азот замещается на гелий. Он практически не растворяется в плазме крови. Кроме этого азот на глубине больше 70 м, а кислород 90 м приобретают наркотические свойства. Поэтому в гелиевой смеси всего 5% кислорода.

Гипербарическая оксигенация

Для лечения заболеваний сосудов, сердечной недостаточности и др., сопровождающихся гипоксией, используется кислород. Если дается чистый кислород при обычном атмосферном давлении, эта процедура называется изобарической оксигенацией (кислородная подушка). Если используется барокамера, в которой давление поднимается выше атмосферного, то этот метод называется гипербарической оксигенацией. Данные методы служат для увеличения напряжения кислорода в крови. При анемической гипоксии эта терапия бесполезна. При гипоксемической и циркуляторной положительно влияет на состояние больного. Изобарическую, а тем более гипербарическую оксигенацию можно использовать лишь в течение непродолжительного времени. Длительное использование кислорода сопровождается кислородным отравлением. При нормальном атмосферном давлении дышать кислородом можно не более 4 часов. Это связано с тем, что при длительном действии кислорода в клетках возникает гипероксия или кислородное отравление. Она сопровождается угнетением окисления углеводов. Кислородное отравление проявляется снижением почечного и мозгового кровотока, снижением систолического объема. Это приводит к потере сознания и судорогам. Одновременно повреждается легочная ткань, а как следствие нарушается диффузионная способность легких. Уменьшается количество сурфактанта в альвеолах, возникает отек легких. У новорожденных детей повреждаются клетки сетчатки. Поэтому при длительной оксигенации применяется не чистый кислород, а газовые смеси.

10. Функциональная система поддержания газового состава крови.
Для поддержания нормального уровня концентрации кислорода в крови одного внешнего дыхания недостаточно. В число исполнительных механизмов функциональной системы кислородного снабжения организма (ФСКС) входят еще механизмы, обеспечивающие связывание кислорода, его транспортировку, уровень окислительно-восстановительных процессов, а также серию поведенческих проявлений, направленных на сохранение кислородного снабжения. Естественно, что системообразующим фактором в ФСКС выступает уровень кислорода в крови, который контролируется хеморецепторами. Полезный  результат ФСКС - нормальная концентрация кислорода в тканях- является  иерархически самым главным результатом гомеостатической деятельности организма, так как  результаты деятельности других гомеостатических функциональных систем (ФС поддержания АД, ФС поддержания состава крови, ФС рН и др.) являются подрезультатами ФСКС, так как вместе обеспечивают условия для кислородного снабжения организма. 

Набор исполнительных механизмов ФСКС определяется теми исполнительными механизмами, которые входят в указанные выше функциональные системы подчиненного ранга. Их пять групп:

 1) параметры  внешнего дыхания (глубина и частота дыхания, легочные объемы и емкости, эффективность легочной вентиляции);

2) параметры гемодинамики и сердечной деятельности (частота сердцебиений и ударный объем сердца, АД и скорость кровотока);

3) параметры выделительной функции и  механизмы поддержания рН, ведь кислотность влияет на кривую диссоциации гемоглобина (выделительная функция ЖКТ и почек, потоотделение, буферные состава крови);

4) параметры насыщения крови кислородом (кислородная емкость крови, количество Нв и эритроцитов, сродство Нв к кислороду);

5) поведение (включается, если указанные внутренние исполнительные механизмы  ФСКС не в состоянии удовлетворить потребность в кислороде) - например, обмахивание веером или открытие форточки, выныривание из воды и т.п. - все, что может помочь избежать удушья.

 Наиболее наглядно вовлечение различных исполнительных механизмов ФСКС в реализацию полезного результата - обеспечения нормального содержания кислорода в крови - проявляется при различных экстремальных условиях, к которым прежде всего относятся условия пониженного или повышенного атмосферного давления, возникновение разнообразной легочной и сердечно-сосудистой патологии.


15.03.2020; 14:20
хиты: 77
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2025. All Rights Reserved. помощь