пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Психология:
» Тема1. Общее представление о психологии как науке
» Тема 2. Историческое введение в психологию
» Тема 3. Эволюционное введение в психологию
» Тема 4. Возникновение, историческое развитие и структура сознания.
» Тема 5. Психофизиологическая проблема
» Тема 6. Человек как субъект познания и деятельности
» Тема 7. Индивидуальные особенности человека как субъекта деятельности
» Тема 8. Эмоционально-волевая регуляция деятельности
» Тема 9. Психология потребностей и мотивации
I семестр:
» Микроэкономика
» Политическая экономика
» Экономика предприятия
» Финансы
» Макроэкономика
» Мировая экономика
» Мат-эк модели
» Вопросы

Ряд Тейлора и Маклорена.

https://dpva.ru/Guide/GuideMathematics/SeriesOfTaylorMaklorenFourier/SeriesOfTaylor/

Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций. Ряды Тейлора применяются при аппроксимации функции многочленами. В частности, линеаризация уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=1:

При использовании рядов, называемых рядами Тейлора, смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Условия применения рядов Тейлора.

1. Для того, чтобы функция f(x) могла быть разложена в ряд Тейлора на интервале (-R;R) необходимо и достаточно, чтобы остаточный член в формуле Тейлора (Маклорена (=Макларена)) для данной функции стремился к нулю при k→∞ на указанном интервале (-R;R).

2. Необходимо чтобы существовали производные для данной функции в точке, в окрестности которой мы собираемся строить ряд Тейлора.

Свойства рядов Тейлора.

1.     Если f есть аналитическая функция, то ее ряд Тейлора в любой точке а области определения f сходится к f в некоторой окрестности а.

2.     Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности а. 

РЯД МАКЛОРЕНА

3) Частным случаем ряда Тейлора является ряд Маклорена (=Макларена) (разложение происходит вокруг точки а=0) Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=0:

при a=0 

члены ряда определяются по формуле

При использовании рядов, называемых рядами Маклорена (=Макларена), смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Условия применния рядов Маклорена

1) Для того, чтобы функция f(x) могла быть разложена в ряд Маклорена (=Макларена) на интервале (-R;R) необходимо и достаточно, чтобы остаточный член в формуле Маклорена (=Макларена) для данной функции стремился к нулю при k→∞ на указанном интервале (-R;R).

2) Необходимо чтобы существовали производные для данной функции в точке а=0, в окрестности которой мы собираемся строить ряд Маклорена (=Макларена).

Численное интегрирование с использованием рядов Маклорена (=Макларена).

Значения многих интегралов нельзя найти с помощью каких-либо аналитических методов. Мы уже рассказывали о вычислении таких интегралов с помощьюформулы трапецийформулы Симпсона. Другой метод нахождения числового значения определенного интеграла - выражение функции в виде ряда Маклорена (=Макларена) с последующим поочередным интегрированием каждого члена.


09.08.2017; 20:03
хиты: 467
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь