пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Психология:
» Тема1. Общее представление о психологии как науке
» Тема 2. Историческое введение в психологию
» Тема 3. Эволюционное введение в психологию
» Тема 4. Возникновение, историческое развитие и структура сознания.
» Тема 5. Психофизиологическая проблема
» Тема 6. Человек как субъект познания и деятельности
» Тема 7. Индивидуальные особенности человека как субъекта деятельности
» Тема 8. Эмоционально-волевая регуляция деятельности
» Тема 9. Психология потребностей и мотивации
I семестр:
» Микроэкономика
» Политическая экономика
» Экономика предприятия
» Финансы
» Макроэкономика
» Мировая экономика
» Мат-эк модели
» Вопросы

Основные понятия и определения теории игр.

В экономической практике часто имеют место конфликтные ситуации. Игровые модели - это, в основном, упрощенные математические модели конфликтов. В отличие от реального конфликта игра ведётся по четким правилам. Для моделирования конфликтных ситуаций разработан специальный аппарат - математическая теория игр. Стороны, участвующие в конфликте, называются игроками.

Каждая формализованная игра (модель) характеризуется:

1. количеством субъектов - игроков, участвующих в конфликте;

2. вариантом действий для каждого из игроков, называемых стратегиями;

3. функциями выигрыша или проигрыша (платежа) исхода конфликта;

Игра, в которой участвуют два игрока A и B называется парной. Если же количество игроков больше двух, то это игра множественная. Мы будем рассматривать модели только парных игр.

Игра, в которой выигрыш одного из игроков точно равен проигрышу другого, называется антагонистической игрой или игрой с нулевой суммой. С рассмотрения моделей антагонистических игр мы и начнём.

Смоделировать (решить) антагонистическую игру - значит, для каждого игрока указать стратегии, удовлетворяющие условию оптимальности, т.е. игрок A должен получить максимальный гарантированный выигрыш, какой бы своей стратегии не придерживался игрок B, а игрок B должен получить минимальный проигрыш, какой бы своей стратегии не придерживался игрок A. Оптимальные стратегии характеризуются устойчивостью, то есть ни одному из игроков не выгодно отклоняться от своей оптимальной стратегии.

Игра – упрощенная формализованная модель конфликтной ситуации. Игрок – одна из сторон в игровой ситуации. В зависимости от постановки задачи, стороной может выступать коллектив или даже целое государство. 
Каждый игрок может иметь свои стратегии. Стратегией i-го игрока x2называется одно из возможных решений из множества допустимых решений этого игрока. 
По количеству стратегий игры делятся на конечные, в которых число стратегий ограничено, и бесконечные, которые имеют бесконечно много различных стратегий. 
Каждый из n участников игры может выбирать свою стратегию. Совокупность стратегий x=x
1,x2,…,xn, которые выбрали участники игры, называется игровой ситуацией

Значение целевой функции в той или иной игровой ситуации можно назвать выигрышем игрока в этой ситуации. 
По характеру выигрышей игры можно разделить на игры с нулевой и ненулевой суммой. В играх с нулевой суммойсумма выигрышей в каждой игровой ситуации равна нулю. Игры двух игроков с нулевой суммой называются антагонистическими. В этих играх выигрыш одного игрока равен проигрышу другого. 
В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры. 
По виду функции выигрышей игры можно разделить на матричные, биматричные, непрерывные, сепарабельные и т. д. 
Матричными играми называются конечные игры двух игроков с нулевой суммой. В этом случае номер строки матрицы соответствует номеру стратегии A
i игрока 1, а номер столбца – номеру стратегии Bj игрока 2. 
Элементами матрицы aij является выигрыш игрока 1 для ситуации (реализации стратегий) AiBj. В силу того, что рассматривается матричная игра с нулевой суммой, выигрыш игрока 1 равен проигрышу игрока 2. 
Можно показать, что всякая матричная игра с известной матрицей платежей сводится к решению задачи линейного программирования. 
Поскольку в прикладных задачах экономики и управления ситуации, сводящиеся к матричным играм, встречаются не очень часто, мы не будем останавливаться на решении этих задач. 
Биматричная игра – это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации A
iBj каждый из игроков имеет свой выигрыш aij для первого игрока и bij– для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. 
По степени неполноты информации, которой обладают ЛПР, игры делятся на стратегические и статистические. 
Стратегические игры – это игры в условиях полной неопределенности. 
Статистические игры – это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента. 
Поскольку с теорией статистических игр тесно связана теория принятия экономических решений, то в дальнейшем мы ограничимся рассмотрением только этого класса игр.

Участники множественной игры могут образовывать коалиции (постоянные или временные). 

Развитие игры во времени можно представлять как ряд последовательных «ходов» участников. Ходом называется выбор игроком одного из предусмотренных правилами игры действий и его осуществление. Ходы бывают личные и случайные. При личном ходе игрок сознательно выбирает и осуществляет тот или другой вариант действий (пример – любой ход в шахматах). При случайном ходе выбор осуществляется не волей игрока, а каким-то механизмом случайного выбора (бросанием монеты, игральной кости, выниманием карты из колоды и т.п.). Некоторые игры (так называемые «чисто азартные») состоят только из случайных ходов – ими теория игр не занимается. Ее цель – оптимизация поведения игрока в игре, где (может быть, наряду со случайными) есть личные ходы. Такие игры называются стратегическими.

Стратегией игрока называется совокупность правил, определяющих выбор варианта действий при каждом личном ходе в зависимости от сложившейся ситуации.


09.08.2017; 17:05
хиты: 0
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь