Основные методы оптимизации сетевых моделей во времени
После того как сетевой график построен, его необходимо оптимизировать. Следует признать, что само слово «оптимизация» в данном случае не является удачным, так как в рамках разработки сетевого графика проекта не ставится задача оптимизации в истинном смысле этого слова. Этот процесс точнее было бы назвать перепланированием или приведением параметров сетевого графика к заданным ограничениям. Довольно часто случается, что сетевой график (его параметры) не соответствует имеющимся ограничениям либо по времени, либо по ресурсам. Поэтому оптимизация может проводиться по следующим параметрам:
а) время;
б) ресурсы:
- трудовые,
- материальные,
- денежные;
в) время и стоимость.
Приоритет отдается оптимизации по времени, так как от этого зависит оптимизация по другим параметрам.
Оптимизация сетевого графика по времени производится в том случае, если продолжительность работ по графику больше или меньше директивной продолжительности [8-10].
Существует несколько методов оптимизации по времени:
- сокращение продолжительности критических работ;
- расчленение критических работ и их запараллеливание;
- изменение топологии сети за счет изменения технологии работ.
Расчет параметров сетевого графика проекта позволяет выявить критические работы, определяющие ход выполнения всего комплекса работ, продолжительность его реализации, резервы времени событий и работ и проанализировать, можно ли его использовать в качестве плана выполнения работ. Чаще всего требуется улучшение сетевого графика с учетом сроков выполнения работ и рационального использования материальных, трудовых и денежных ресурсов, т. е. требуется его оптимизация. Рассмотрим некоторые математические модели оптимизационных задач на сетевых графиках.
6.1 Оптимизация проекта по времени. Пусть задан срок выполнения проекта t0, а расчетное tкр > t0. В этом случае оптимизация комплекса работ сводится к сокращению продолжительности критического пути, которое может быть осуществлено либо за счет перераспределения внутренних резервов, либо за счет привлечения дополнительных средств.
Сокращение времени завершения проекта, как правило, связано с привлечением дополнительных средств (количество рабочих, сверхурочное время). Рассмотрим два примера постановки задачи оптимизации проекта по времени с привлечением дополнительных средств.
Задача 1 заключается в определении величины дополнительных вложений хij в отдельные работы проекта с тем, чтобы общий срок его выполнения не превышал заданной величины t0, а суммарный расход дополнительных средств Вбыл минимальным.
Задача 2заключается в сокращении срока выполнения проекта, насколько это возможно за счет вложения суммы дополнительных средств, не превышающей В. Время выполнения каждой работы должно быть не меньше минимально возможного времени dij. Необходимо определить время начала и окончания каждой работы и величину дополнительных средств хij, которые нужно выделить на ускорение выполнения работы (i,j).
6.2 Оптимизация проекта по стоимости. В общем случае стоимость выполнения работы зависит от ее продолжительности. Продолжительность каждой работы может изменяться между двумя границами dij и Dij, определяемыми техническими или экономическими соображениями. Если Dij — нормальная продолжительность, ей соответствует минимальная стоимость сijвыполнения работы (i, j); если dij — минимально возможная (экстренная) продолжительность работы, при этом стоимость работы будет максимальной Cij. Если при планировании проекта для каждой работы будет взята ее нормальная (наибольшая) длительность Dij, то стоимость проекта будет минимальной. Если для каждой работы взять ее ускоренную, минимально возможную продолжительность dij, то получим срочный план. Стоимость выполнения проекта в этом случае будет максимальной
6.3 Оптимизация проекта по ресурсам. Пусть проект задан сетевым графиком. Для выполнения проекта выделено R единиц ресурса. Каждая работа характеризуется продолжительностью выполнения tij и интенсивностью потребления ресурса rij. Под интенсивностью потребления будем понимать требуемое количество ресурса для выполнения работы (i, j) в единицу времени. Для простоты допустим, что интенсивности постоянные.
Под оптимальным распределением ресурса понимается такое размещение работ во времени, при котором в любой момент времени потребность в ресурсах не превышает имеющегося в наличии количества ресурса, а время выполнения проекта минимально.