пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Психология:
» Тема1. Общее представление о психологии как науке
» Тема 2. Историческое введение в психологию
» Тема 3. Эволюционное введение в психологию
» Тема 4. Возникновение, историческое развитие и структура сознания.
» Тема 5. Психофизиологическая проблема
» Тема 6. Человек как субъект познания и деятельности
» Тема 7. Индивидуальные особенности человека как субъекта деятельности
» Тема 8. Эмоционально-волевая регуляция деятельности
» Тема 9. Психология потребностей и мотивации
I семестр:
» Микроэкономика
» Политическая экономика
» Экономика предприятия
» Финансы
» Макроэкономика
» Мировая экономика
» Мат-эк модели
» Вопросы

Основные положения метода градиентного спуска.

Градиентный спуск — метод нахождения локального экстремума (минимума или максимума) функции с помощью движения вдоль градиента.

!85.png

!86.png

https://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B9_%D1%81%D0%BF%D1%83%D1%81%D0%BA

Методы отыскания экстремума, использующие производные, имеют строгое математическое обоснование. Известно, что при отыскании экстремума не существует лучшего направления, чем движение по градиенту.

Градиентом дифференцируемой функции f(x) в точке х[0] называется n-мерный вектор f(x[0]), компоненты которого являются частными производными функции f(х),вычисленными в точке х[0], т. е.

f'(x[0]) = (дf(х[0])/дх1, …, дf(х[0])/дхn)T.

Этот вектор перпендикулярен к плоскости, проведенной через точку х[0] , и касательной к поверхности уровня функции f(x),проходящей через точку х[0] .В каждой точке такой поверхности функция f(x) принимает одинаковое значение. Приравнивая функцию различным постоянным величинам С0, С1, ... , получим серию поверхностей, характеризующих ее топологию

Вектор-градиент направлен в сторону наискорейшего возрастания функции в данной точке. Вектор, противоположный градиенту (-f’(х[0])), называется антиградиентом и направлен в сторону наискорейшего убывания функции. В точке минимума градиент функции равен нулю. На свойствах градиента основаны методы первого порядка, называемые также градиентным и методами минимизации. Использование этих методов в общем случае позволяет определить точку локального минимума функции.

Очевидно, что если нет дополнительной информации, то из начальной точки х[0] разумно перейти в точку х [1], лежащую в направлении антиградиента - наискорейшего убывания функции. Выбирая в качестве направления спуска р[k] антиградиент -f’(х[k]) в точке х[k], получаем итерационный процесс вида

х[k+1] = x[k]-akf'(x[k])аk > 0; k=0, 1, 2, ...

В координатной форме этот процесс записывается следующим образом:

xi[k+1]=хi[k] - ak image185.png f(x[k])image185.png xi

= 1, ..., nk= 0, 1, 2,...

В качестве критерия останова итерационного процесса используют либо выполнение условия малости приращения аргумента || x[k+l] - x[k] || <= e, либо выполнение условия малости градиента

|| f’(x[k+l]) || <= g,

Здесь e и g - заданные малые величины.

Возможен и комбинированный критерий, состоящий в одновременном выполнении указанных условий. Градиентные методы отличаются друг от друга способами выбора величины шага аk.

При методе с постоянным шагом для всех итераций выбирается некоторая постоянная величина шага. Достаточно малый шаг аkобеспечит убывание функции, т. е. выполнение неравенства


f(х[k+1]) = f(x[k] – akf’(x[k])) < f(x[k]).

Однако это может привести к необходимости проводить неприемлемо большое количество итераций для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции либо привести к колебаниям около точки минимума (зацикливанию). Из-за сложности получения необходимой информации для выбора величины шага методы с постоянным шагом применяются на практике редко.

Более экономичны в смысле количества итераций и надежности градиентные методы с переменным шагом, когда в зависимости от результатов вычислений величина шага некоторым образом меняется. Рассмотрим применяемые на практике варианты таких методов.

http://www.studall.org/all-185281.html


09.08.2017; 20:08
хиты: 0
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь