Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
В классическом варианте коэффициенты при переменных, свободные члены и неизвестные считаются вещественными числами, но все методы и результаты сохраняются (либо естественным образом обобщаются) на случай любых полей, например, комплексных чисел.
Решение систем линейных алгебраических уравнений — одна из классических задач линейной алгебры, во многом определившая её объекты и методы. Кроме того, линейные алгебраические уравнения и методы их решения играют важную роль во многих прикладных направлениях, в том числе в линейном программировании, эконометрике.
Однородные системы линейных алгебраических уравнений.
Общий вид системы линейных алгебраических уравнений:
Здесь m — количество уравнений, а n — количество переменных, x1, x2, …, xn — неизвестные, которые надо определить, коэффициенты a11, a12, …, amn и свободные члены b1, b2, …, bm предполагаются известными. Индексы коэффициентов в системах линейных уравнений (aij) формируются по следующему соглашению: первый индекс (i) обозначает номер уравнения, второй (j) — номер переменной, при которой стоит этот коэффициент.
Система называется однородной, если все её свободные члены равны нулю (b1 = b2 = …bm = 0), иначе — неоднородной.