пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Психология:
» Тема1. Общее представление о психологии как науке
» Тема 2. Историческое введение в психологию
» Тема 3. Эволюционное введение в психологию
» Тема 4. Возникновение, историческое развитие и структура сознания.
» Тема 5. Психофизиологическая проблема
» Тема 6. Человек как субъект познания и деятельности
» Тема 7. Индивидуальные особенности человека как субъекта деятельности
» Тема 8. Эмоционально-волевая регуляция деятельности
» Тема 9. Психология потребностей и мотивации
I семестр:
» Микроэкономика
» Политическая экономика
» Экономика предприятия
» Финансы
» Макроэкономика
» Мировая экономика
» Мат-эк модели
» Вопросы

Переходные вероятности. Вероятности состояний.

Переходные вероятности.

Зависимость P i/i+1 = f(Si) называют переходной вероятностью, часто говорят, что именно процесс  без последействий обладает марковским свойством, однако, строго говоря, здесь есть одна неточность. Дело в том, что можно представить себе СП, в котором вероятностная связь существует не только с предшествующими, но и более ранними - Si-1, Si+2 ... состояниями, т.е.

Pi/i+1 = f (Si , S i-1, S i-2) (8.1)

Такие процессы также рассматривались А.А.Марковым, который предложил называть их в отличие от первого случая (простой цепи) - сложнойцепью. В настоящее время теория таких цепей разработана слабо и обычно применяют так называемый процесс укрупнения состояний путем математических преобразований, объединяя предшествующие состояния в одно.

Это обстоятельство должно обязательно учитываться при составлении математических моделей принятия решений.

Марковский СП называется однородным, если переходные веро-ятности Pi/i+1 остаются постоянными в ходе процесса.

Вероятности состояний.

Вероятности 

 называются вероятностями состояния.

Для любого шага (момента времени t1,t2,...tk,... или номера 1,2,...,k,...) существуют некоторые вероятности перехода системы из любого состояния в любое другое (некоторые из них равны нулю, если непосредственный переход за один шаг невозможен), а также вероятность задержки системы в данном состоянии. Эти вероятности называются переходнымивероятностями марковской цепи.

Если значения переходных вероятностей не зависят от номера шага, то марковская цепь называется однородной, или стационарной. В противном случае марковская цепь является неоднородной, или нестационарной.


06.08.2017; 17:48
хиты: 0
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь