Случайным процессом называется множество или семейство случайных величин, значения которых индексируются временным параметром. Например, число студентов в аудитории, атмосферное давление или температура в этой аудитории как функции времени являются случайными процессами.
Случайные процессы находят широкое применение при изучении сложных стохастических систем как адекватные математические модели процесса функционирования таких систем.
Число возможных состояний (пространство состояний) случайного процесса может быть конечным или бесконечным. Если число возможных состояний конечно или счетно (всем возможным состояниям могут быть присвоены порядковые номера), то случайный процесс называется процессом с дискретными состояниями. Например, число покупателей в магазине, число клиентов в банке в течение дня описываются случайными процессами с дискретными состояниями.
Если переменные, описывающие случайный процесс, могут принимать любые значения из конечного или бесконечного непрерывного интервала, а, значит, число состояний несчетно, то случайный процесс называется процессом с непрерывными состояниями. Например, температура воздуха в течение суток является случайным процессом с непрерывными состояниями.
Особое место среди случайных процессов занимают так называемые марковские случайные процессы, впервые описанные А.А. Марковым в 1907г. Случайный процесс называется марковским, если вероятность любого его состояния в будущем зависит только от состояния в настоящем и не зависит от того, каким образом и когда процесс пришел в текущее состояние. Аналитически сказанное может быть записано в виде:
Иными словами, в марковских случайных процессах влияние (воздействие) всей предыстории процесса на его будущее полностью сосредоточено в текущем состоянии процесса. Это свойство называется свойством отсутствия последействия или применительно к случайным процессам марковским свойством.
Свойство отсутствия последействия накладывает существенные ограничения на распределение времени пребывания марковского процесса в том или ином состоянии. Так, в случае цепи Маркова с непрерывным временем время пребывания в данном состоянии должно быть распределено по экспоненциальному, а в случае дискретной цепи Маркова - по геометрическому, законам распределения, которые являются единственными, соответственно, непрерывным и дискретным распределениями без последействия. Только при таких ограничениях на времена пребывания процесса в состояниях гарантировано выполнение марковского свойства.
Рассмотрим марковский случайный процесс g(t) с конечным числом состояний E0, E1, …, En. Обозначим через Pi(t) вероятность того, что случайный процесс в момент времени t находится в состоянии Ei:
Главная задача изучения марковских случайных процессов заключается в определении вероятностей Pi(t), i = 0,n, нахождения процесса в любой момент времени t в том или ином состоянии, что дает полную информацию о случайном процессе. Для решения данной задачи необходимо:
1) указать в каком состоянии находится процесс в начальный момент времени;
2) описать переходы между состояниями.
Состояние процесса в начальный момент времени t=0 задается вектором начальных вероятностей
Предельные вероятности Pi, i=0,n, часто называют вероятностями состояний равновесия или стационарными вероятностями.