пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Психология:
» Тема1. Общее представление о психологии как науке
» Тема 2. Историческое введение в психологию
» Тема 3. Эволюционное введение в психологию
» Тема 4. Возникновение, историческое развитие и структура сознания.
» Тема 5. Психофизиологическая проблема
» Тема 6. Человек как субъект познания и деятельности
» Тема 7. Индивидуальные особенности человека как субъекта деятельности
» Тема 8. Эмоционально-волевая регуляция деятельности
» Тема 9. Психология потребностей и мотивации
I семестр:
» Микроэкономика
» Политическая экономика
» Экономика предприятия
» Финансы
» Макроэкономика
» Мировая экономика
» Мат-эк модели
» Вопросы

Построение функции спроса по реальным данным.

В качестве исходных данных для построения ф-ии спроса и предложения выступают данные независимого наблюдения предложения и цены. Если необходимо оценить коэфф-ты линейной ф-ии спроса, то применяют непосредственно метод наименьших квадратов p(x)=Co+C1(x). Если нелинейная ф-ия – используют линеаризацию. Самостоятельно применяют метод наим. кВ. для нелинейной ф-ии спроса, т.е. линеаризируют функцию зависящую

 х(p) = c1 x p^альфа

Функции спроса (предложения) по цене могут быть как линейными, так и нелинейными. В случае линейной функции она имеет следующий вид: 

^y индекс x = a+b . x

Функция характеризует собой семейства прямых, каждая из которых характеризуется конкретными значениями коэффициентов a и b. Наилучшей для рассматриваемой выборки из всего множества прямых является, та прямая, которая на плоскости xoy расположена «ближе» всего, в определенном смысле, к опытным точкам. В качестве меры близости прямой и некоторой точки на плоскости можно выбрать расстояние между ними. При этом под расстоянием следует понимать модуль разности между опытным (наблюдаемым) значением результирующей величины и теоретическим, вычисленным по формуле при одном и том же значении фактора т.е.

yi - ^y индекс xi = e индекс i   (i=1,2,...,n)

В качестве критерия близости между прямой и множеством точек на плоскости целесообразно выбрать минимум суммы квадратов этих расстояний. 

 Здесь считается, что yi и xi - известные статистические данные; a и b – неизвестные параметры (коэффициенты) линии регрессии. Поскольку функция Eнепрерывна, выпукла и ограничена снизу нулем, то она имеет минимум.

Изложенная идея минимизации суммы квадратов отклонений (на плоскости расстояний) опытных от теоретических значений объясняемой переменной положена в основу метода наименьших квадратов.

«Наилучшая» по методу наименьших квадратов прямая линия всегда существует. Вместе с тем, это не означает, что она является наилучшей среди всех возможных функций, например, в сравнении с нелинейными .


04.08.2017; 21:39
хиты: 0
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь