пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Психология:
» Тема1. Общее представление о психологии как науке
» Тема 2. Историческое введение в психологию
» Тема 3. Эволюционное введение в психологию
» Тема 4. Возникновение, историческое развитие и структура сознания.
» Тема 5. Психофизиологическая проблема
» Тема 6. Человек как субъект познания и деятельности
» Тема 7. Индивидуальные особенности человека как субъекта деятельности
» Тема 8. Эмоционально-волевая регуляция деятельности
» Тема 9. Психология потребностей и мотивации
I семестр:
» Микроэкономика
» Политическая экономика
» Экономика предприятия
» Финансы
» Макроэкономика
» Мировая экономика
» Мат-эк модели
» Вопросы

Постановка задач нелинейного программирования в моделировании производства.

Математическая модель задачи нелинейного программиро­вания в общем виде формулируется следующим образом: найти вектор   = 1, X2, …, Xn), удовлетворяющий системе ограни­чений

И доставляющий экстремум (наибольшее или наименьшее зна­чение) целевой функции

Где Xj — переменные, J = __ 1n ; L, F, Gi — заданные функции от N переменных, Bi — фиксированные значения.

Нелинейное программирование применяется при прогнози­ровании промышленного производства, управлении товарными ресурсами, планировании обслуживания и ремонта оборудова­ния и т. д.

Для задачи нелинейного программирования в отличие от линейных задач нет единого метода решения. В зависимости от вида целевой функции и системы ограничений разработаны специальные методы решения, к которым относятся методы множителей Лагранжа, квадратичное и выпуклое программи­рование, градиентные методы, приближенные методы реше­ния, графический метод.

Из нелинейного программирования наиболее разработаны задачи, в которых система ограничений линейная, а целевая функция нелинейная. Однако даже для таких задач оптималь­ное решение может быть найдено для определенного класса це­левых функций. Например, когда целевая функция сепарабельная, т. е. является суммой П функций Fj(Xj), или квадратичная. При этом следует отметить, что в отличие от задач линейного программирования, где точками экстремума являются верши­ны многогранника решений, в задачах с нелинейной целевой функцией точки могут находиться внутри многогранника, на его ребре или в вершине.

При решении задач нелинейного программирования для це­левой функции необходимо определить глобальный максимум или глобальный минимум. Глобальный максимум (минимум) функции — это ее наибольшее (наименьшее) значение из ло­кальных максимумов (минимумов).

Наличие локальных экстремумов затрудняет решение за­дач, так как большинство существующих методов нелинейного программирования не позволяет установить, является найден­ный экстремум локальным или глобальным. Поэтому имеется возможность в качестве оптимального решения принять ло­кальный экстремум, который может существенно отличаться от глобального.

Методы решения задачи

Одним из методов, которые позволяют свести задачу нелинейного программирования к решению системы уравнений, является метод неопределенных множителей Лагранжа.

Если целевая функция F{\displaystyle F} является линейной, а ограниченным пространством является политоп, то задача является задачей линейного программирования, которая может быть решена с помощью хорошо известных решений линейного программирования.

Если целевая функция является вогнутой (задача максимизации) или выпуклой (задача минимизации) и множеством ограничений служит выпуклая, то задачу называют выпуклой, и в большинстве случаев могут быть использованы общие методы выпуклой оптимизации.

Если целевая функция является отношением вогнутых и выпуклых функций (при максимизации) и ограничения выпуклые, то задача может быть преобразована в задачу выпуклой оптимизации использованием техник дробного программирования.

Существуют несколько методов для решения невыпуклых задач. Один подход заключается в использовании специальных формулировок задач линейного программирования. Другой метод предусматривает использование методов ветвей и границ, где задача делится на подклассы, чтобы быть решенной с выпуклыми (задача минимизации) или линейными аппроксимациями, которые образуют нижнюю границу общей стоимости в пределах раздела. При следующих разделах в определенный момент будет получено фактическое решение, стоимость которого равна лучшей нижней границе, полученной для любого из приближенных решений. Это решение является оптимальным, хотя, возможно, не единственным. Алгоритм можно прекратить на ранней стадии, с уверенностью, что оптимальное решение находится в рамках допустимого отклонения от найденной лучшей точки; такие точки называются ε-оптимальными. Завершение ε-оптимальных точек, как правило, необходимое для обеспечения конечности завершения. Это особенно полезно для больших, сложных задач и задач с неопределенными расходами или значениями, где неопределенность может быть определена из соответствующей оценки надежности.

Дифференцирование и условия регулярности, условия Каруша — Куна — Таккера (ККТ) обеспечивают необходимые условия оптимальности решения. При выпуклости, эти условия являются и достаточными.


04.08.2017; 21:04
хиты: 0
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь