При расчете переходных процессов в RС-цепях в качестве независимой переменной выбирают uC. Затем также составляют дифференциальное уравнение для заданной RС-цепи, решение которого с учетом начальных условий для uC(0) и определяет закон изменения напряжения на емкости.
Рассмотрим вначале RC-цепь при нулевых начальных условиях (рис. 6.6), которая подключается в момент t = 0 к источнику постоянного и(t) = U или синусоидального и(t) = Umsin(t +
u ) напряжения. Переходный процесс в данной цепи описывается дифференциальным уравнением
(6.23)
решение которого ищем также в форме суммы общего и частного решений, определяющих свободную и принужденную составляющие: (6.24)
Свободная составляющая является решением однородного дифференциального уравнения (6.25)
(6.26)
где р определяется из характеристического уравнения
Величина RC носит название постоянной времени RC-цепи и обозначается через .
Определим принужденную составляющую uC пp для случая, когда u(t) = U = const. Из рис. 6.6 следует, что в установившемся режиме uC пp = U. Следовательно, с учетом (6.24) и (6.26) уравнение для иC примет вид иC = Ae–t / + U. Для нахождения постоянной интегрирования А учтем нулевые начальные условия для uC(0–) и второй закон коммутации (6.2): uC(0–) = uC(0+) = 0 = A + U, откуда А = —U. Таким образом, получаем окончательно:
(6.27)
Ток в цепи определяется согласно (1.12): (6.28)
На рис. 6.7 изображены графические зависимости uС(t) и i(t).
Анализ полученных результатов показывает, что в момент t = 0+ емкость С (при нулевых начальных условиях) ведет себя как короткозамкнутый участок. Напротив, при t = емкость представляет собой бесконечно большое сопротивление (разрыв цепи для постоянного тока).
Рассмотрим случай гармонического воздействия. Нетрудно видеть что при этом (6.29)
где (6.30)
а напряжение
Постоянная А находится из начальных условий для uC(0+) при t = 0+:
Окончательно закон изменения напряжения (6.31)
На рис. 6.8 изображен график зависимости uC(t). Анализ уравнения (6.31) показывает, что в случае неудачного включения при u =
–
и большой
в цепи могут возникать перенапряжения, достигающие на емкости величины uCmax
2UmC. В случае удачного включения, когда
u =
/2 –
, в цепи сразу наступает установившийся режим.
![]() |
![]() |
![]() |
![]() |
Ток в цепи (6.32)
Рассмотрим теперь случай ненулевых начальных условий, когда емкость С, заряженная до напряжения U, разряжается на сопротивление R (рис. 6.9). К моменту коммутации в емкости была запасена энергия WC = CU2/2. После коммутации возникает переходный процесс, определяемый уравнением (6.33)
т. е. имеет место свободный режим разряда (емкости): (6.34)
Постоянную интегрирования А находим из начального условия для uC(0+) = U и закона коммутации (6.2):
Таким образом, получаем закон изменения напряжения на емкости (6.35)
и тока в цепи (6.36)
Знак "–" в уравнении (6.36) для тока свидетельствует о том, что ток разряда направлен противоположно опорному направлению напряжения иС в емкости. На рис. 6.10 приведены графики изменения напряжения иС(t) и тока i(t) данной RС-цепи. Следует подчеркнуть, что вся запасенная энергия WC емкости с течением времени преобразуется в элементе R в тепло. При ненулевых начальных условиях С ведет себя как источник напряжения.