Числовой функцией называется соответствие между числовыми множествами XY, при котором каждому значению x соответствует (сопоставлено) некоторое значение y.

У каждого прообраза всегда один образ, у каждого образа может быть много прообразов.
Взаимнооднозначная функция – это когда разные x имеют разные y.
Способы задания функций:
а) аналитический;
б) графический;
в) табличный;
г) алгоритмический.
Функции делятся на 2 класса
- Элементарные
- Неэлементарные (специальные).
Элементарные функции изучаются в школьной математике и делятся на:
а) степенные y = xn
б) показательные y = ax
в) тригонометрические y = sin x и другие.
- Основные элементарные функции
- Элементарные, полученные из основных с помощью арифметических операций и операции получения сложной функции (операции композиции).
f
X Y
f -1 (обратная функция)
Обратные к показательным функциям – логарифмические функции. Обратные к тригонометрическим
Пример:
y = f (g(x)) – сложная функция – композиция элементарных функций.
Элементарными функциями называются функции, полученные из элементарных базисных функций с помощью алгебраических операций и операций композиции.
Г(f) – график функции. График функции есть множество точек (x, y), где y = f(x).
Общие свойства функций:
- Четность –
- Нечетность –
- Периодичность –
Рисунок
f(x) – ограниченная сверху, если
f(x) – ограниченная снизу, если
f(x) – ограниченная, если
f(x) – монотонная, если она постоянно возрастает или постоянно убывает
Если y = f(x), то Д – область определения данной функции.
Свойства модулей суммы и разности: