Уравнение Шредингера — основное уравнение нерелятивистской квантовой механики, описывающее динамику частиц. Состояние классической частицы в любой момент времени описывается заданием ее координат и импульсов (x,y,z,px,py,pz). Зная эти величины в момент времени t, можно определить эволюцию системы под действием известных сил во все последующие моменты времени. Координаты и импульсы частиц сами являются величинами, непосредственно измеряемыми на опыте. В квантовой физике состояние системы описывается волновой функцией ψ(x,y,z,t). Т. к. для квантовой частицы нельзя одновременно точно определить значения ее координат и импульса, то не имеет смысла говорить о движении частицы по определенной траектории, можно определить только вероятность нахождения частицы в данной точке в данный момент времени, которая определяется квадратом модуля волновой функции
Эволюция квантовой системы в нерелятивистском случае описывается волновой функцией, удовлетворяющей уравнению Шредингера
где ψ(x,y,z,t) − волновая функция, − оператор Гамильтона (оператор полной энергии системы).
В нерелятивистском случае
где m − масса частицы, − оператор импульса,
− оператор потенциальной энергии частицы. Задать закон движения частицы в квантовой механике это значит определить значение волновой функции в каждый момент времени в каждой точке пространства. Уравнение Шредингера играет в квантовой механике такую же роль, как и второй закон Ньютона в классической механике.
В стационарном состоянии:
Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы явным образом не зависит от времени, имеет вид