Определение.Производной функции в точке называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю (если этот предел существует):
.
Определение.Функция , имеющая производную в каждой точке интервала , называется дифференцируемой в этом интервале.
Определение.Операция нахождения производной функции называется дифференцированием.
Значение производной функции в точке обозначается одним из символов: .
Если функция описывает какой-либо физический процесс, то производная есть скорость протекания этого процесса. В этом состоит физический смысл производной.
Геометрический смысл производной.Рассмотрим график непрерывной кривой , имеющий в точке невертикальную касательную. Найдем ее угловой коэффициент , где - угол касательной с осью . Для этого проведем через точку и графика секущую (рисунок 1).
Обозначим через - угол между секущей и осью . На рисунке видно, что угловой коэффициент секущей равен
.
При в силу непрерывности функции приращение тоже стремится к нулю; поэтому точка неограниченно приближается по кривой к точке , а секущая , поворачиваясь около точки , переходит в касательную. Угол , т.е. . Следовательно, , поэтому угловой коэффициент касательной равен .
Угловой коэффициент касательной к кривой
. Это равенство перепишем в виде: , т.е. производная в точке равна угловому коэффициенту касательной к графику функции в точке, абсцисса которой равна . В этом заключается геометрический смысл производной.
Уравнение касательной
Пусть функция задается уравнением y=f(x), нужно написать уравнение касательнойв точке x0. Из определения производной:
y/(x)=limΔx→0ΔxΔy
Δy=f(x+Δx)−f(x).
Уравнение касательнойк графику функции: y=kx+b (k,b=const). Из геометрического смысла производной: f/(x0)=tgα=k
Т.к. x0 и f(x0)∈ прямой, то уравнение касательнойзаписывается в виде: y−f(x0)=f/(x0)(x−x0) , или
y=f/(x0)·x+f(x0)−f/(x0)·x0.
Уравнение нормали
Нормаль-- это перпендикуляр к касательной(см. рисунок). Исходя из этого:
tgβ=tg(2π−α)=ctgα=1tgα=1f/(x0)
Т.к. угол наклона нормали -- это угол β1, то имеем:
tgβ1=tg(π−β)=−tgβ=−1f/(x).
Точка (x0,f(x0))∈ нормали, уравнение примет вид:
y−f(x0)=−1f/(x0)(x−x0).