1.Дайте характеристику запоминающим устройствам с произвольным доступом.
Запоминающее устройство с произвольным доступом — один из видов памяти компьютера, позволяющий единовременно получить доступ к любой ячейке (всегда за одно и то же время, вне зависимости от расположения) по её адресу на чтение или запись.
Это отличает данный вид памяти от устройств памяти первых компьютеров (последовательных компьютеров), созданных в конце 1940-х — начале 1950-х годов (EDSAC,EDVAC, UNIVAC), которые для хранения программы использовали разрядно-последовательную память[1] на ртутных линиях задержки при которой разряды слова для последующей обработки в АЛУ поступали последовательно один за другим.
2.Типы и принцип работы фотоэлектрических приборов.
Фотоэлектрические приборы обычно классифицируют по виду рабочей среды, типу фотоэлектрического эффекта, функциональному назначению и др. По виду рабочей среды фотоэлектрические приборы подразделяют на электровакуумные и полупроводниковые. В зависимости от типа фотоэффекта, лежащего в основе действия прибора, различают фотоэлектрические приборы с внешним фотоэффектом (электровакуумные фотоэлементы, фотоэлектронные умножители), фотоэлектрические приборы, действие которых основано на внутреннем фотоэффекте (фоторезисторы, фотодиоды,). В зависимости от функционального назначения фотоэлектрические приборы подразделяются на фотоприёмники, фотодатчики и фотоэлектрические преобразователи энергии оптического излучения в электрическую. Фотоприёмники преобразуют световой сигнал в электрический и применяются, например, в аппаратуре факсимильной связи, устройствах считывания информации в вычислительной технике, киноаппаратуре. К особой группе фотоприёмников относят телевизионные передающие трубки. Фотодатчики предназначены для преобразования измеряемой величины (деформации, давления и т. д.) в электрический сигнал. Принцип действия фотоэлектрических приборов основан на преобразовании светового потока ( от лампы или лазера), проходящего через промежуточный измерительный элемент в электрический сигнал с помощью фотоприемников. В зависимости от используемого промежуточного элемента преобразователи делятся на:Сортировочный, Растровые, Дифракционные.
3. Коммутатор. Характеристика.
Сетевой коммутатор (жарг. свитч от англ. switch — переключатель) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Коммутатор работает на канальном (втором) уровне модели OSI.
Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу на некоторое время. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты, за исключением того порта, с которого он был получен. Со временем коммутатор строит таблицу для всех активных MAC-адресов, в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса. Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые).
Более сложные коммутаторы позволяют управлять коммутацией на сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например «Layer 3 Switch» или сокращенно «L3 Switch». Управление коммутатором может осуществляться посредством Web-интерфейса, протокола SNMP, RMON и т. п.
Многие управляемые коммутаторы позволяют настраивать дополнительные функции: VLAN, QoS, агрегирование, зеркалирование.
Сложные коммутаторы можно объединять в одно логическое устройство — стек — с целью увеличения числа портов. Например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 90 ((4*24)-6=90) портами либо с 96 портами (если для стекирования используются специальные порты).
4. Для чего в НЖМД применяются защитные диоды
При выключении индуктивных нагрузок (таких как реле, электромагниты, магнитные пускатели, электродвигатели) возникает ЭДС самоиндукции. ЭДС самоиндукции препятствует уменьшению силы тока через индуктивность и «стремится» поддержать ток на прежнем уровне. При выключении тока энергия магнитного поля, созданного индуктивностью, должна где-то рассеяться. Магнитное поле, создаваемое индуктивной нагрузкой, обладает энергией. Таким образом, после отключения индуктивность сама становится источником тока и напряжения, а возникающее на закрытом ключе напряжение может достигать высоких значений и приводить к искрению и обгоранию контактов механических и пробою полупроводниковых ключей поскольку в этих случаях энергия будет рассеиваться непосредственно на само́м ключе. Диодная защита является простой и одной из широко распространённых схем, позволяющих защитить ключи с индуктивной нагрузкой.