Интенсивность волн де Бройля в данной точке пространства связана с числом частиц, попавших в эту точку, о чем свидетельствуют опыты по дифракции микрочастиц. Поэтому волновые свойства микрочастиц требуют статистического (вероятностного) подхода к их описанию.
Для описания поведения квантовых систем вводится волновая функция (или пси-функция) Y(x,y,z,t). Она определяется таким образом, чтобы вероятность dw того, что частица находится в объеме dV, была равна:
(5.11)
Физический смысл имеет не сама функция Y, а квадрат её модуля , которым задается интенсивность волн де Бройля (здесь Y* - функция, комплексно сопряженная с Y). Величина имеет смысл плотности вероятности rw:
(5.12)
а сама волновая функция имеет смысл амплитуды вероятности.
Условие нормировки вероятностей получается из того, что вероятность существования частицы где-либо в пространстве равна единице (интеграл вычисляется по всему бесконечному пространству):
(5.13)
Волновая функция, характеризующая вероятность обнаружения частицы в элементе объема, должна быть:
1) конечной (вероятность не может быть больше единицы);
2) однозначной (вероятность не может быть неоднозначной величиной);
3) непрерывной (вероятность не может изменяться скачкообразно).
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1, Y2, …, Yn, …, то она также может находиться в состоянии, описываемом линейной комбинацией этих функций:
(5.14)
где Cn (n = 1, 2, ...) – комплексные числа.
Основополагающими принципами квантовой физики являются принципы суперпозиции, неопределенности, дополнительности и тождественности.
Принцип суперпозиции в классической физике позволяет получить результирующий эффект от наложения (суперпозиции) нескольких независимых воздействий как сумму эффектов, вызываемых каждым воздействие в отдельности. Он справедлив для систем или полей, описываемых линейными уравнениями. Этот принцип очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или несколькими волновыми функциями ψ1,ψ2,…ψń, то она может находиться в состоянии, описываемом любой линейной комбинацией этих функций
Ψ=c1ψ1+c2ψ2+….+сnψn,
где с1, с2,…сn – произвольные комплексные числа.
Принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн:
S = S1+S2+….+Sn,
где S1, S2,…..Sn – возмущения, вызываемые волной. В случае негармонической волны ее можно представить как сумму гармонических волн.
Принцип неопределенности состоит в том, что невозможно одновременно определить две характеристики микрочастицы, например, скорости и координаты. Он отражает двойственную корпускулярно-волновую природу элементарных частиц. Соотношения неопределенностей свидетельствуют о том, что чем определеннее значение одного из параметров, входящих в соотношения, тем неопределеннее значение другого параметра и наоборот. Имеется в виду, что параметры измеряются одновременно.