БЕРИЛЛИЙ- Высокотоксичный элемент. Простое вещество бериллий — относительно твёрдый металл светло-серого цвета, имеет весьма высокую стоимость].
Разновидности берилла считаются драгоценными камнями: аквамарин — голубой, зеленовато-голубой, голубовато-зелёный; изумруд — густо-зелёный, ярко-зелёный;гелиодор — жёлтый; известны ряд других разновидностей берилла, различающихся окраской (темно-синие, розовые, красные, бледно-голубые, бесцветные и др.). Цвет бериллу придают примеси различных элементов. Бериллий легко растворяется в разбавленных водных растворах кислот (соляной, серной, азотной), однако холодная концентрированная азотная кислота пассивируетметалл. Реакция бериллия с водными растворами щелочей сопровождается выделением водорода и образованием гидроксобериллатов:
При проведении реакции с расплавом щелочи при 400—500 °C образуются бериллаты:
В виде простого вещества в XIX веке бериллий получали действием калия на безводный хлорид бериллия:
В настоящее время бериллий получают, восстанавливая его фторид магнием:
либо электролизом расплава смеси хлоридов бериллия и натрия. Исходные соли бериллия выделяют при переработке бериллиевой руды.
Бериллий в основном используют как легирующую добавку к различным сплавам. Бериллий слабо поглощает рентгеновское излучение, поэтому из него изготавливают окошки рентгеновских трубокОкси́д бери́ллия — амфотерный оксид, имеющий химическую формулу BeO. В природе оксид бериллия встречается в виде минерала бромеллита
концентрированной серной кислотой:
При температуре выше 1000°С оксид бериллия ступает в обратимую реакцию гидрохлорирования (понижение температуры системы вызывает обратный процесс разложения образовавшегося хлорида бериллия):[2]
Гидрокси́д бери́ллия — амфотерный гидроксид, имеющий химическую формулу Be(OH)2. При стандартных условиях представляет собой гелеобразное белое вещество, практически нерастворимое в воде. Вместе с тем, он хорошо растворяется в разбавленных минеральных кислотах
Взаимодействие с щелочами с образованием соли:
Взаимодействие с кислотами с образованием соли и воды:
Разложение на оксид бериллия и воду при нагревании до 400 °C:
МАГНИй-Простое вещество магний — лёгкий, ковкий металл серебристо-белого цвета.
Обычный промышленный метод получения металлического магния — это электролиз расплава смеси безводных хлоридов магния MgCl2 (бишофит), натрия NaCl и калия KCl. В расплаве электрохимическому восстановлению подвергается хлорид магния:
Разработан и другой способ получения магния — термический. В этом случае для восстановления оксида магния при высокой температуре используют кремний или кокс:
Хим св-ва.
Магний может гореть даже в углекислом газе:
Раскаленный магний энергично реагирует с водой, вследствие чего горящий магний нельзя тушить водой:
Возможна также реакция:
Щелочи на магний не действуют, в кислотах он растворяется с бурным выделением водорода:
Применяется для восстановления металлического титана из тетрахлорида титана. Используется для получения лёгких и сверхлёгких сплавов (самолётостроение, производство автомобилей), а также для изготовления осветительных и зажигательных ракет.
Окси́д ма́гния — химическое соединение с формулой MgO, белые кристаллы, нерастворимые в воде, пожаро- и взрывобезопасен. Реагирует с разбавленными кислотами с образованием солей, плохо — с холодной водой, образуя Mg(OH)2:
С горячей водой реагирует лучше, реакция идет быстрее.
Оксид магния получают обжигом минералов магнезита и доломита.
В промышленности применяется для производства огнеупоров, цементов, очистки нефтепродуктов, как наполнитель при производстве резины. Сверхлегкая окись магния применяется как очень мелкий абразив для очистки поверхностей, в частности, в электронной промышленности
Гидрокси́д ма́гния — неорганическое вещество, осно́вный гидроксид металла магния. Слабое нерастворимое основание
Получение.
Взаимодействие раствора хлорида магния с обожжённым доломитом:
MaCl2 + CaO*MgO + 2H2O = 2Mg(OH)2 + CaCl2
Взаимодействие металлического магния с парами воды:
Как и все слабые основания, гидроксид магния термически неустойчив. Разлагается при нагревании до 350 °C:
Взаимодействует с кислотами с образованием соли и воды (реакция нейтрализации):
Взаимодействие с кислотными оксидами с образованием соли и воды:
Взаимодействие с горячими концентрированными растворами щелочей с образованием гидроксомагнезатов:
Бериллаты — химические соединения, представляющие собой соли амфотерного гидроксида бериллия Be(OH)2, который диссоциирует преимущественно с отщеплением протона:
Бериллаты представляет бесцветные или белые кристаллические вещества, устойчивые на воздухе только в отсутствие следов влаги. В присутствие влаги или при растворении воде бериллаты легко гидролизируют, с образованием гидроксида бериллия и соответствующей щелочи:
Бериллаты легко реагируют с кислотами различной силы и концентрации, с образованием гидроксида бериллия или соответствующей соли бериллия:
Na2BeO2 + 4HCl = BeCl2 + 2NaCl + 2H2O
Так же в присутствие влаги бериллаты легко реагируют с диоксидами углерода и серы, различными оксидами азота и т.п.:
Na2BeO2 + 2NO2 + H2O = Be(OH)2 + NaNO3 + NaNO2
Получение.Бериллаты образуются в различных условиях. Наиболее распространен способ высокотемпературного синтеза при взаимодействии оксида или гидроксида бериллия с оксидами,
гидроксидами или карбонатами щелочных металлов:
ПРИМЕНЕНИЕ.
На использовании бериллатов щелочных металлов основан один из методов разделения бериллия и алюминия
Токсиколо́гия
Токсиколо́гия — наука, изучающая ядовитые (токсичные) вещества, потенциальную опасность их воздействия на организмы и экосистемы, механизмы токсического действия, а также методы диагностики, профилактики и лечения развивающихся вследствие такого воздействия заболеваний. Токсичность - способность некоторых химических соединений и веществ биологической природы оказывать вредное действие на организм человека, животных и растений. Канцерогенное вещество - (от латинского cancer -рак) - химическое вещество, воздействие которого на организм при определенных условиях вызывает рак и другие опухоли. Ведущими задачами в токсикологии является установление токсических доз веществ на различные организмы, прежде всего на человека; раскрытие механизмов действия веществ в токсических дозах, их метаболизма, в том числе исследования генотоксичности ксенобиотиков,.