1.
Аварийные режимы в нагрузках соединенных звездой
Для соединения трехфазной цепи в звезду возможны следующие аварийные режимы работы:
1) обрыв фазы (рис. 3.10);
2) обрыв нулевого провода (рис. 3.11);
3) короткое замыкание фазы при обрыве нуля (рис. 3.12).
4) обрыв фазы и нуля, рис. 3.12.
1) При обрыве фазы А , работа нагрузкой не совершается, а остальные нагрузки () свои режимы работы не изменят (рис. 3.13): .
Если нагрузки связаны и является одним целым, то этот режим будет аварийным. Так, если эта нагрузка – асинхронный двигатель, то он будет в аварийном режиме и нулевой провод будет нагружен дополнительно (рис. 3.13):
2) Обрыв нулевого провода не всегда вызывает аварию в трехфазных цепях. Если нагрузка симметрична, то обрыв нулевого провода не изменит токов нагрузок, так как для симметричной нагрузки
.
Для несимметричных нагрузок , и поэтому такой режим может вызвать аварию.
Для того чтобы показать это, используем метод двух узлов:
Напряжение (рис. 3.14) не равно нулю, если нагрузки несимметричны. Фазные токи также будут неодинаковыми.
3) При коротком замыкании фазы А и обрыве нуля напряжение этой фазы равно нулю:, (рис. 3.15).
Нагрузка фазы В увеличится в раз:
.
Аналогично и в фазе С:
;
будет увеличен по отношению к исходному в раз.
4) Обрыв фазы и нулевого провода дает:
.
В оставшихся фазах токи будут одинаковыми, а напряжения на них будут зависеть от сопротивлений нагрузок (рис. 3.16).
Аварийные режимы в нагрузках соединенных треугольником
Для соединения трехфазной цепи в треугольник возможны следующие аварийные режимы:
1) обрыв фазы;
2) обрыв линейного провода.
1) Обрыв фазы.
Ключ к1 замкнут, ключ к2 разомкнут (рис. 3.17). В этом режиме ток в фазе отсутствует, а остальные нагрузки работают как обычно (рис. 3.18). В таком аварийном режиме линейные токи фаз А и В соответствуют фазным токам, а линейный ток фазы С остается таким, каким был прежде.
)
2)Обрыв линейного провода. Ключ к1 разомкнут и ключ к2 замкнут (рис. 3.19). Фаза нагрузки с своего режима не изменит, а фазы становятся последовательно соединенными и параллельно подключеннымик линейному напряжению фаз В, С (см. рис. 3.17), то есть цепь становитсяоднофазной. Топографическая и векторная диаграммы в этом случае могут иметьвид, как показано на рис.3.19.
2.
Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в непреобразованной части цепи должны оставаться неизменными, т.е. такими, каким они были до преобразования. В результате преобразований расчет цепи упрощается и часто сводится к элементарным арифметическим операциям.
Определение последовательного соединения элементов
Последовательное соединение элементов электрической цепи - это такое соединение, когда вывод одного элемента подключен к выводу другого элемента. В этом месте подключения нет узлов. Следующий элемент так же подключен к выводу другого элемента и т.д...
На рисунке ниже показано последовательное подключение четырех сопротивлений.
Формулы для расчета эквивалентного сопротивления при последовательном подключении элементов
При последовательном подключении сопротивлений их эквивалентное сопротивление равно сумме сопротивлений.
Rэкв=ΣRi =R1 + R2 + R3 +...+Rn
При последовательном соединении индуктивностей их эквивалентное сопротивление равно сумме индуктивностей (без учета взаимной индуктивности).
Lэкв=ΣLi =L1 + L2 + L3 +...+Ln
При последовательном подключении емкостей обратная величина от эквивалентной емкости равна сумме обратных величин емкостей.
1/Сэкв =Σ(1/Ci )=1/С1+1/С2+1/С3+...+1/Cn
Свойства последовательного соединения элементов
При последовательном подключении элементов через них протекает одинаковый ток.
Согласно закону Ома и второму закону Кирхгофа экивалентное (суммарное) напряжение на участке последовательно соединенных сопротивлений равно сумме напряжений на каждом элементе. Uобщ= U1+U2+U3+U4 = I·(R1+R2+R3+R4). На данном принципе построены простейшие делители напряжения.
Определение параллельного соединения
Параллельное соединение электрических элементов (проводников, сопротивлений, емкостей, индуктивностей) - это такое соединение, при котором подключенные элементы цепиимеют два общих узла подключения.
Другое определение: сопротивления подключены параллельно, если они подключены одно и той же паре узлов.
Графическое обозначение схемы параллельного соеднинения
На приведенном рисунке показана схема параллельное подключения сопротивлений R1, R2, R3, R4. Из схемы видно, что все эти четыре сопротивления имеют две общие точки (узла подключения).
В электротехнике принято, но не строго требуется, рисовать провода горизонтально и вертикально. Поэтому эту же схему можно изобразить, как на рисунке ниже. Это тоже параллельное соединение тех же самых сопротивлений.
Формула для расчета параллельного соединения сопротивлений
При параллельном соединении обратная величина от эквивалентного сопротивления равна сумме обратных величин всех параллельно подключенных сопротивлений. Эквивалентная проводимость равна сумме всех параллельно подключенных проводимостей электрической схемы.
Для приведенной выше схемы эквивалентное сопротивление можно рассчитать по формуле:
В частном случае при подключении параллельно двух сопротивлений:
Эквивалентное сопротивление цепи определяется по формуле:
В случае подключения "n" одинаковых сопротивлений, эквивалентное сопротивление можно рассчитать по частной формуле:
Формулы для частного рассчета вытекают из основной формулы.
Формула для расчета параллельного соединения емкостей (конденсаторов)
При параллельном подключении емкостей (конденсаторов) эквивалентная емкость равна сумме параллельно подключенных емкостей:
Формула для расчета параллельного соединения индуктивностей
При параллельном подключении индуктивностей, эквивалентная индуктивность рассчитывается так же, как и эквивалентное сопротивление при параллельном соединении:
Необходимо обратить внимание, что в формуле не учтены взаимные индуктивности.
Пример свертывания параллельного сопротивления
Для участка электрической цепи необходимо найти параллельное соединение сопротивлений выполнить их преобразование до одного.
Из схемы видно, что параллельно подключены только R2 и R4. R3 не параллельно, т.к. одним концом оно подключено к источнику ЭДС E1. R1 - одним концом подключено к R5, а не к узлу. R5 - одним концом подключено к R1, а не к узлу. Можно так же говорить, что последовательное соединение сопротивлений R1 и R5 подключено параллельно с R2 и R4.
Рассчитать эквивалентное сопротивлений R14 можно по формуле для двух сопротивлений.
Ток при параллельном соединении
При параллельном соединении сопротивлений ток через каждое сопротивление в общем случае разный. Величина тока обратно пропорциональна величине сопротивления.
Напряжение при параллельном соединении
При параллельном соединении разность потенциалов между узлами, объединяющими элементы цепи, одинакова для всех элементов.