Генеральная средняя и выборочная средняя
Пусть задана дискретная случайная величина Х в виде генеральной совокупности. Генеральной средней называют среднее арифметическое значений признака генеральной совокупности:
|
|
(6.2) |
где xi – варианта генеральной совокупности, ni – частота варианты xi,
.
N– все возможные значения частот дискретной случайной величины Х.
В частном случае, когда генеральная совокупность содержит по одному значению каждой варианты, генеральная средняя равна:
|
|
(6.2а) |
Если рассматривать значения Х генеральной совокупности как случайную величину, то математическое ожидание М(Х) равно генеральной средней М(Х)= xг, а генеральная средняя определяется как математическое ожидание:
xг = М(Х).
Пусть извлечена выборка объема n из генеральной совокупности относительно количественного признака X. Выборочной средней`x называется среднее арифметическое значение признака выборочной совокупности.
|
|
(6.3) |
где
.
В частном случае, когда выборка содержит по одному значению каждой варианты, выборочная средняя равна:
|
|
(6.3а) |
Аналогично генеральной совокупности можно сделать вывод относительно выборочной средней. Если рассматривать значения Х выборки, как случайную величину, то математическое ожидание m(Х) равно выборочной средней:
|
|
Генеральной дисперсией называют среднее арифметическое квадратов отклонения значений признака X от их среднего значения xг. Рассеяние значений количественного признака X в выборке вокруг своего среднего значения`x характеризует выборочная дисперсия. Выборочной дисперсией Dв называется среднее арифметическое квадратов отклонения значений признака X от их среднего значения .
|
|
(6.5) |
В частном случае, когда выборка содержит по одному значению каждой варианты, выборочная дисперсия равна:
|
|
Пусть из генеральной совокупности объёмом n извлечена выборка. Требуется по данным выборке оценить неизвестную генеральную дисперсию Dг.
Выборочная дисперсия является смещённой оценкой генеральной дисперсии. Отличие математического ожидания выборочной дисперсии от оцениваемой генеральной дисперсии определяется следующим соотношением:
|
|
(6.16) |
Выборочная дисперсия может быть исправлена. Исправленная выборочная дисперсия равна:
|
|
(6.17) |
Исправленная выборочная дисперсия (6.17) является несмещённой оценкой генеральной дисперсии. Таким образом, получена оценка генеральной дисперсии по исправленной выборочной дисперсии.