Известно, что если случайная величина X задана плотностью распределения , то вероятность того, что X примет значение, принадлежащее интервалу (a,b), такова:
.
Пусть случайная величина X распределена по нормальному закону. Тогда
.
Преобразуем эту формулу так, чтобы можно было пользоваться готовыми таблицами. Введем новую переменную . Отсюда .
Найдем новые пределы интегрирования. Если , то , если , то . Тогда
.
Выражение , входящее в эту формулу, является функцией верхнего предела X, которая называется функцией Лапласа или интегралом вероятностей и обозначается Ф(x). В результате получаем:
Ф— Ф,
где Ф(x) = .
Эту формулу называют формулой Лапласа.
Отметим ряд свойств функции Лапласа, полезных для применения.
1. Функция Ф(x) – нечетная, т. е. Ф(-x) = –Ф(x).
2. Функция Ф(x) – возрастающая, быстро приближающаяся к своему пределу, равному 0,5: