Если в трехмерном пространстве задана прямоугольная система координат Oxyz, то уравнением плоскости в этой системе координат трехмерного пространства называют такое уравнение с тремя неизвестными x, y и z, которому удовлетворяют координаты всех точек плоскости и не удовлетворяют координаты никаких других точек.
Теорема
Всякое уравнение вида , где A, B, C и D – некоторые действительные числа, причем А, В и C одновременно не равны нулю, определяет плоскость в заданной прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве определяется уравнением вида
при некотором наборе чисел A, B, C и D.
Доказательство
Так как числа А, В и С одновременно не равны нулю, то существует точка , координаты которой удовлетворяют уравнению
, то есть, справедливо равенство
. Отнимем левую и правую части полученного равенства соответственно от левой и правой частей уравнения
, при этом получим уравнение вида
эквивалентное исходному уравнению
. Теперь, если мы докажем, что уравнение
определяет плоскость, то этим будет доказано, что эквивалентное ему уравнение
также определяет плоскость в заданной прямоугольной системе координат в трехмерном пространстве.
Равенство представляет собой необходимое и достаточное условие перпендикулярности векторов
и
. Иными словами, координаты плавающей точки
удовлетворяют уравнению
тогда и только тогда, когда перпендикулярны векторы
и
. Тогда, учитывая факт, приведенный перед теоремой, мы можем утверждать, что если справедливо равенство
, то множество точек
определяет плоскость, нормальным вектором которой является
, причем эта плоскость проходит через точку
. Другими словами, уравнение
определяет в прямоугольной системе координатOxyz в трехмерном пространстве указанную выше плоскость. Следовательно, эквивалентное уравнение
определяет эту же плоскость. Первая часть теоремы доказана.
Приступим к доказательству второй части.
Пусть нам дана плоскость, проходящая через точку , нормальным вектором которой является
. Докажем, что в прямоугольной системе координат Oxyz ее задает уравнение вида
.
Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет . Тогда векторы
и
будут перпендикулярны, следовательно, их скалярное произведение будет равно нулю:
. Приняв
, уравнение примет вид
. Это уравнение и задает нашу плоскость. Итак, теорема полностью доказана.