Правило сложения векторов по правилу треугольников
Рассмотрим два произвольных ненулевых вектора и
:
Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора
:
Суммой векторов и
является вектор
.
Кстати, если вектор отложить от начала вектора
, то получится эквивалентное правило параллелограмма сложения векторов.
Умножение вектора на число
Произведением ненулевого вектора на число
является такой вектор
, длина которого равна
, причём векторы
и
сонаправлены при
и противоположно направлены при
.
Разбираемся более детально:
1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.
2) Длина. Если множитель заключен в пределах или
, то длина векторауменьшается. Так, длина вектора
в два раза меньше длины вектора
. Если множитель
по модулю больше единицы, то длина вектора увеличивается в
раз.
3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, . Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.