Что такое однородная система линейных уравнений?
Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:
Совершенно ясно, что однородная система всегда совместна, то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение
Пример 1
Решить однородную систему линейных уравнений
Решение: чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:
(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.
(2) К третьей строке прибавили вторую строку, умноженную на –1.
Делить третью строку на 3 не имеет особого смысла.
В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.
Ответ:
14. Понятие фундаментальной системы решений.
Фундаментальная система решений – это множество линейно независимых векторов , каждый из которых является решением однородной системы, кроме того, решением также является линейная комбинация данных векторов , где – произвольные действительные числа.
Количество векторов фундаментальной системы рассчитывается по формуле:
Однако в практических заданиях гораздо удобнее ориентироваться на следующий признак: количество векторов фундаментальной системы равно количеству свободных неизвестных.
Представим общее решение Примера №3 в векторной форме. Свободная переменная в данном случае одна, поэтому фундаментальная система решений состоит из единственного вектора . Как его найти? Для этого свободной переменной нужно придать произвольное ненулевое значение. Проще всего, конечно же, выбрать и получить: .
Координаты вектора должны удовлетворять каждому уравнению системы, и будет не лишним в этом убедиться.
Ответ следует записать в виде линейной комбинации векторов фундаментальной системы. В нашей ситуации линейная комбинация состоит из одинокого слагаемого. Общее решение однородной системы я буду обозначать через вектор (подстрочный индекс расшифровывается «Общее Однородной»).
Ответ: общее решение: , где (любое вещественное число)
15. Свободный вектор
Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:
В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор.
16. Векторы и линейные операции над ними
Сложение векторов. Пусть и – два произвольных вектора. Возьмем произвольную точку О и построим вектор ; затем от точки А отложим вектор . Вектор , соединяющий начало первого слагаемого вектора с концом второго, называется суммой этих векторов и обозначается (рис. 1).
Рис. 1
Ту же сумму можно получить иным способом. Отложим от точки О векторы и . Построим на этих векторах как на сторонах параллелограмм ОАСВ. Вектор – диагональ параллелограмма – является суммой векторов и (рис. 2).
Рис. 2
Понятие суммы можно обобщить на случай любого конечного числа слагаемых (рис. 3).
Рис. 3
Вычитание векторов. Разностью векторов и называется такой вектор , который в сумме с вектором дает вектор : Û .
Если векторы и привести к общему началу, то разность представляет собой отрезок, соединяющий их концы и направленный от «вычитаемого» к «уменьшаемому» (рис. 4).
Рис. 4
Таким образом, если на векторах и , отложенных из общей точки О, построить параллелограмм ОАСВ, то вектор , совпадающий с одной диагональю, равен сумме , а вектор , совпадающий с другой диагональю, – разности (рис. 5).
Рис. 5
Умножение вектора на число. Произведением вектора на действительное число называется вектор (обозначают ), определяемый следующими условиями:
1) ,
2) при и при .
Очевидно, что при .
Построим, например, векторы и для заданного вектора (рис. 6).
Рис. 6
Из определения следует: два вектора и коллинеарны тогда и только тогда, когда имеет место равенство :
17.Проекция вектора на ось. Координаты вектора и его свойства
Пусть в декартовых координатах OXYZ вектор AB задан координатами начала А(х1;у1;z1) и конца В(х2;у2;z2) этого вектора.
Нам уже известно определение проекции точки на ось как основания перпендикуляра, проходящего через заданную точку.
Проекцией вектора AB на ось ОХ называется разность между абсциссами проекции конца и начала вектора AB.
т.е. ПРох AB=х2-х1, ПРоу AB=у2-у1, ПРoz AB=z2-z1.
Для краткости используют следующие обозначения данных проекций:
ПРох AB=Х, ПРоу AB=У и ПРоz AB=Z, тогда получаем Z=z2-z1, Х=х2-х1,
У=у2-у1.
Из рассмотренных формул следует, что проекция вектора на любую ось есть длина отрезка между основаниями перпендикуляров, опущенных из точек А и В на эту же ось, взятая со знаком “+”, если направление отрезка и направление оси совпадают, и со знаком “-“, если они противоположны.
Можно доказать, что: а) если проекции вектора заданы, то они однозначно определяют сам вектор; б) если два вектора равны, то они имеют равные проекции,
поэтому проекции вектора на оси называют его координатами
AB=(Х;У;Z).
Некоторые свойства проекции вектора на ось:
Для определённости будем рассматривать эти свойства относительно оси ОХ.
Предположим, что вектор a=AB образует с осью ОХ угол φ.
Угол между вектором a и осью определим следующим образом.
Через произвольную точку пространства проведем 2 луча – один ║ положительному направлению ОХ, а другой - ║ направлению вектора. Угол между лучами определяет угол между вектором и осью.
Проекция вектора на ось ОХ равна произведению длины вектора на косинус угла между вектором и осью.
Рис. 1.15. Проекция вектора на ось
Пусть задан вектор AB и АхВх - его проекция на ось ОХ. Опустив перпендикуляр из точки А на ось ОХ, получаем Ах.
А |
Проведем через точку А прямую ║ вектору AB до пересечения ВВх и получим точку с. Из треугольника СВхА имеем
ПР ох AB=А хВх=│А хC│cosφ=│АВ│cosφ
Проекция суммы нескольких векторов на ось равна сумме проекций складываемых векторов на ту же осью;
При умножении вектора AB на число m, его проекция умножится на то же число m.