пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

ЛЕКЦИЯ 7. Учение об иммунитете

Сущность и роль иммунитета

План

  1. Иммунология и ее задачи.
  2. Иммунная система. Виды иммунитета.
  3. Реакции и механизмы иммунитета.
  4. Факторы неспецифической защиты организма.
  5. Иммунологическая память и иммунологическая толерантность.

 

Иммунологиянаука об иммунитете живых организмов, изучающая биологические механизмы самозащиты организма от любых чужеродных веществ, наука о строении и закономерностях функционирования иммунной системы, её заболеваниях и способах иммунотерапии.

Иммунология изучает:

  • Строение иммунной системы;
  • Закономерности и механизмы развития иммунных реакций;
  • Механизмы контроля и регуляции иммунных реакций;
  • Болезни иммунной системы и её дисфункции;
  • Условия и закономерности развития иммунопатологических реакций и способы их коррекции;
  • Возможность использования резервов и механизмов иммунной системы в борьбе с инфекционными и неинфекционными заболеваниями;
  • Иммунологические проблемы трансплантации органов и тканей.

В нашем организме функционируют различные системы жизнеобеспечения: органы зрения, слуха, легочная система, ЦНС и др. Каждая из них выполняет свою специальную работу, обеспечивая  зрение, слух. Одной из  важнейших  систем организма является иммунная. Она вырабатывает защитные антитела, нейтрализирующие микробы и их токсины, и фагоциты, пожирающие микробы. Иммунная система формирует иммунологический опыт. 

По образному выражению Р.В. Петрова: "Две специализированные системы: мозг и иммунная система – создают два типа индивидуальности у человека – духовную, которая обеспечивается деятельностью ЦНС и телесную (соматическую) которая обеспечивается работай иммунной системы".    

Типы иммунитета

Различают два типа иммунитета: специфический и неспецифический. Специфический иммунитет носит индивидуальный характер и формируется на протяжении всей жизни человека в результате контакта его иммунной системы с различными микробами и антигенами. Специфический иммунитет сохраняет память о перенесенной инфекции и препятствует ее повторному возникновению. Неспецифический иммунитет носит видоспецифический характер, то есть практически одинаков у всех представителей одного вида. Неспецифический иммунитет обеспечивает борьбу с инфекцией на ранних этапах ее развития, когда специфический иммунитет еще не сформировался. Состояние неспецифического иммунитета определяет предрасположенность человека к различным банальным инфекциям, возбудителями которых являются условно патогенные микробы.

Классификация компонентов иммунной системы

Невосприимчивость организма к инфекционным заболеваниям бывает специфической и неспецифической (неспецифическая резистентность). Специфическая невосприимчивость = иммунитет.

Неспецифическая резистентность бывает обусловлена:

  1. Видовой невосприимчивостью (например, невосприимчивость человека к болезням животных);
  2. Бактерицидными факторами организма (фагоцитоз и воспаление, лизоцим, показатель pH, лихорадочные реакции)
  • Стерильный иммунитет (выздоровление сопровождается полным устранением микробов)
  • Нестерильный иммунитет (формируется т.н. носительство)
  • Иммуноглобулины типа M (IgM) (выделяются в первое время после контакта с инфекцией, обусловливают первичный иммунный ответ)
  • Антитела типа G (IgG) (защищает организм на протяжении длительного времени, участвует во вторичном иммунном ответе, при первичном заражении, пик их концентрации приходится на 2 неделю болезни)
  • Иммуноглобулины типа Е (IgE) обусловливают аллергические реакции — гиперчувствительность немедленного типа (ГНТ)
  • Иммуноглобулин типа А (защищает организм от проникновения инфекции через кожу и слизистые оболочки, в большом количестве содержится в грудном молоке)

Не существует понятия «неспецифический иммунный ответ» — существует понятие «неспецифическая резистентность» организма. Иммунный ответ всегда конкретен и специфичен.

На первом этапе столкновения с чужеродным антигеном запускается неспецифический патологический защитный процесс — воспаление, сопровождающийся фагоцитозом, выделением медиаторов воспаления - гистамина, серотонина, цитокинов и т. п. Фагоциты (макрофаги) поглощают антигены и контактируют с лимфоцитами Т-хелперами, представляя им на поверхности антигенные детерминанты. Т-хелперы запускают размножение (выделяя специфические белковые вещества — интерлейкины) специфических для данного антигена клонов Т-киллеров и В-лимфоцитов из предсуществующих стволовых клеток, которые прошли проверку на толерантность в эмбриональном периоде (клонально-селекционная теория Бернета).

У млекопитающих сформировались два типа иммунитета: клеточные и гуморальный. Это происходит из-за того, что у млекопитающих развивается 2 типа лимфоцитов - Т- и В-клеток. Эти лимфоциты образуются из стволовых клеток-предшественников в костном мозге.

Клеточный иммунный ответ

Т-клетки действуют на следующие объекты:

  1. Злокачественные клетки.
  2. Клетки, инфицированные микроорганизмами.
  3. Трансплантированные органы и ткани.

В атаке участвует вся клетка, поэтому ответ называется клеточным, свободные тела при атаке не выделяются.

Наружная мембрана Т-клеток несёт специальные рецепторы, сходные по конфигурации с антителами. Но рецепторы Т-клеток не могут распознавать целую молекулу антигена. Эти рецепторы связываются только с фрагментами антигенов или других чужеродных молекул. Среди Т-клеток по особенностям наружной мембраны (находящихся на ней разных антигенов) выделяютя Т4- и Т8-клетки. Они различаются по своим функциям. Т4-клетки называют хелперами (вирус иммунодефицита, вызывающий СПИД заражает главным образом их). Т4-клетки действуют совместно с макрофагами.

  1. Сначала макрофаг захватывает несущий антигены организм
  2. Затем макрофаг отщепляет часть антигена (пептид) и выводит его на свою поверхность, как бы предъявляя иммуным клеткам.
  3. Т4-лимфоцит, который имеет соответствующий по структуре рецептор, распознаёт этот пептид как чужой и образует большое количество лимфокинов.

Лимфокины выполняют функции:

  1. Лимфокины стимулируют размножение Т-клеток.
  2. Стимулируют выработку антител В-клетками.
  3. Инициируют процесс воспаления.

Лимфокины, выдеяемые супрессорами, могут подавлять активность всех типов лейкоцитов, в том числе и фагоцитов. Но лимфокины выделяемые хелперами стимулируют её. Численное соотношение этих двух типов лимфоцитов регулирует силу иммунного ответа.

Существует 2 типа Т8-клеток: клетки-супрессоры и клетки-киллеры.

Клетки-киллеры образуют меньшее количество лимфокинов, но они спосоны убивать заражнные вирусами и злокачественные клетки. Это происходит в результате химической атаки, или "продырявливания" заражённых или злокачественных клеток. Киллеры не распознают части попавших извне антигенов, чужеродные пептиды. Так же киллеры атакуют и постепенно разрушают трансплантированные органы.

В-клетки выделяют тела в плазму крови, тканевую жидкость, лимфу.

Атака В-клеток направлена против:

  1. Бактерий.
  2. Некоторых вирусов.

Каждая из В-клеток распознаёт определённый антиген и синтезирует связывающие его антитела. Поверхность мембраны В-клеток несёт антигенные рецепторы, инденичные образуемым ею антителам.

Выделяют 2 типа в-клеток - клетки памяти и эффекторы.

Эффекторы выделяют в кровь, тканевую жидкость антитела. Живут эти клетки около нескольких суток.

Клетки памяти живут гораздо больше года. Они способны быстро давать иммунный ответ на любую возможную инфекцию в будущем.

Имму́нная систе́ма — подсистема, существующая у позвоночных животных и объединяющая органы и ткани, которые защищают организм от заболеваний, идентифицируя и уничтожая опухолевые клетки и патогены. Иммунная система распознает множество разнообразных возбудителей, от вирусов до паразитических червей, и отличает их от биомолекул клеток. Распознавание возбудителей усложнятся их адаптацией и эволюционным развитием новых методов успешного инфицирования организма-хозяина.

Конечной целью иммунной системы является уничтожение чужеродного агента, которым может оказаться болезнетворный микроорганизм, инородное тело, ядовитое вещество или переродившаяся клетка самого организма. Этим достигается биологическая индивидуальность организма.

В иммунной системе развитых организмов существует множество способов обнаружения и удаления чужеродных агентов, этот процесс называется иммунным ответом. Все формы иммунного ответа можно разделить на приобретённые и врождённые реакции. Основное различие между ними в том, что приобретённый иммунитет высокоспецифичен по отношению к конкретному типу антигенов и позволяет быстрее и эффективнее уничтожать их при повторном столкновении. Антигенами называют вызывающие специфические реакции организма молекулы, воспринимаемые, как чужеродные агенты. Например, у перенёсших ветрянку (корь, дифтерию) людей часто возникает пожизненный иммунитет к этим заболеваниям. В случае аутоиммунных реакций антигеном может служить молекула, произведенная самим организмом.

Многоэтапность иммунной защиты

Иммунная система защищает организм от инфекции в несколько этапов, при этом с каждым этапом повышается специфичность защиты. Самая простая линия защиты представляет собой физические барьеры, которые предотвращают попадание инфекции — бактерий и вирусов — в организм. Если возбудитель проникает через эти барьеры, промежуточную неспецифическую реакцию на него осуществляет врождённая иммунная система. Врождённая иммунная система обнаруживается у всех растений и животных.[3] На случай, когда возбудители успешно преодолевают воздействие врожденных иммунных механизмов, у позвоночных существует третий уровень защиты — приобретённая иммунная защита. Эта часть иммунной системы адаптирует свою реакцию во время инфекционного процесса, чтобы улучшить распознавание чужеродного биологического материала. Такой улучшенный ответ сохраняется после уничтожения возбудителя в виде иммунологической памяти. Она позволяет механизмам приобретённого иммунитета развивать более быструю и более сильную ответную реакцию при каждом появлении такого же возбудителя.

Две стороны иммунной системы

Врождённый иммунитет

Приобретённый иммунитет

Реакция неспецифична

Специфическая реакция, привязанная к чужеродному антигену

Столкновение с инфекцией приводит к немедленной максимальной реакции

Между контактом с инфекцией и максимальным ответом латентный период

Клеточные и гуморальные звенья

Клеточные и гуморальные звенья

Не обладает иммунологической памятью

Столкновение с чужеродным агентом приводит к иммунологической памяти

Обнаруживается практически у всех форм жизни

Присутствует только у челюстноротых позвоночных

 

 

Как врождённый, так и приобретённый иммунитет, зависят от способности иммунной системы отличать свои молекулы от чужих. В иммуннологии под своими молекулами понимают те компоненты организма, которые иммунная система способна отличить от чужеродных. Напротив, чужими называют молекулы, которые распознаются как чужеродные. Распознаваемые молекулы называют антигенами (термин произошёл от сокращения англ. antibody generators — «вызывающие антитела»), которые в настоящее время определяют как вещества, связываемые специфическими иммунными рецепторами системы приобретённого иммунитета.

 

Поверхностные барьеры

Организмы защищены от инфекций рядом механических, химических и биологических барьеров. Примерами механических барьеров, служащих первым этапом защиты от инфекции, могут служить восковое покрытие многих листьев растений, экзоскелет членистоногих, скорлупа яиц и кожа. Однако организм не может быть полностью отграничен от внешней среды, поэтому существуют и другие системы, защищающие внешние сообщения организма — дыхательную, пищеварительную и мочеполовую системы. Эти системы можно разделить на постоянно действующие и включающиеся в ответ на вторжение. Пример постоянно действующей системы - крохотные волоски на стенках трахеи, называемые ресничками, которые совершают быстрые движения, направленные вверх, удаляя всякую пыль, пыльцу растений, или другие мелкие инородные объекты, чтобы они не могли попасть в легкие. Аналогичным образом, изгнание микроорганизмов осуществляется при помощи промывного действия слёз и мочи. Слизь, секретируемая в дыхательную и пищеварительную систему, служит для связывания и обездвиживания микроорганизмов.[8]

Если постоянно действующих механизмов оказывается недостаточно, то включаются "аварийные" механизмы очистки организма, такие как кашель, чихание, рвота и диарея.

Помимо этого, существуют химические защитные барьеры. Кожа и дыхательные пути выделяют антимикробные пептиды, например бета-дефенсины.[9] Такие ферменты, как лизоцим и фосфолипаза A, содержатся в слюне, слезах и грудном молоке, и также обладают антимикробным действием.[10][11] Выделения из влагалища служат химическим барьером после начала менструаций, когда они становятся слабокислыми. Сперма содержит дефенсины и цинк для уничтожения возбудителей.[12][13] В желудке соляная кислота и протеолитические ферменты служат мощными химическими защитными факторами в отношении попавших с пищей микроорганизмов.

В мочеполовом и желудочно-кишечном трактах существуют биологические барьеры, представленные дружественными микроорганизмами — комменсалами. Приспособившаяся к обитанию в этих условиях неболезнетворная микрофлора конкурирует с патогенными бактериями за пищу и пространство, и, в ряде случаев, изменяя условия обитания, в частности pH или содержание железа. Это снижает вероятность достижения болезнетворными микробами достаточных для возникновения инфекции количеств. Поскольку большая часть антибиотиков неспецифически воздействует на бактерии, и, зачастую, не затрагивает грибы, антибактериальная терапия может приводить к чрезмерному «разрастанию» грибковых микроорганизомов, что вызывает такие заболевания, как молочница (кандидоз). Есть убедительные сведения, подтверждающие, что введение пробиотической флоры, например чистых культур лактобацилл, которые содержатся, в частности, в йогурте и других кисломолочных продуктах, помогает восстановить нужный баланс микробных популяций при кишечных инфекциях у детей. Также существуют обнадеживающие данные в исследованиях применения пробиотиков при бактериальном гастроэнтерите, воспалительных заболеваниях кишечника, инфекциях мочевыводящих путей и послеоперационных инфекциях.[16][17][18]

Врождённый иммунитет

Если микроорганизму удается проникнуть через первичные барьеры, он сталкивается с клетками и механизмами системы врождённого иммунитета. Врождённая иммунная защита неспецифична, то есть её звенья распознают и реагируют на чужеродные тела независимо от их особенностей.[7] Эта система не создает длительной невосприимчивости к конкретной инфекции. Система врождённого иммунитета осуществляет основную защиту у большинства живых многоклеточных организмов.

Гуморальные и биохимические факторы

Воспаление

Воспаление — одна из наиболее ранних реакций иммунной системы на инфекцию. К симптомам воспаления относятся покраснение и отек, что свидетельствует о усилении притока крови к вовлеченным в процесс тканям. В развитии воспалительной реакции важную роль играют эйкозаноиды и цитокины, высвобождаемые поврежденными или инфицированными клетками. К эйкозаноидам относятся простагландины, вызывающие повышение температуры и расширение кровеносных сосудов, и лейкотриены, которые привлекают определённые виды белых кровяных телец (лейкоцитов). К наиболее распространённым цитокинам относятся интерлейкины, отвечающие за взаимодействие между лейкоцитами, хемокины, стимулирующие хемотаксис, и интерфероны, обладающие противовирусными свойствами, в частности способностью угнетать синтез белка в клетках макроорганизма. Кроме того, могут играть роль выделяемые факторы роста и цитотоксические факторы. Эти цитокины и другие биоорганические соединения привлекают клетки иммунной системы к очагу инфекции и способствуют заживлению поврежденных тканей путём уничтожения возбудителей.

 Система комплемента

Система комплемента представляет собой биохимический каскад, который атакует мембрану чужеродных клеток. В него входят более 20 различных белков. Комплемент является основным гуморальным компонентом врождённого иммунного ответа. Система комплемента имеется у многих видов, в том числе у ряда беспозвоночных.

У человека этот механизм активируется путём связывания белков комплемента с углеводами на поверхности микробных клеток, либо путём связывания комплемента с антителами, которые прикрепились к этим микробам (второй способ отражает взаимосвязь механизмов врождённого и приобретённого иммунитета). Сигнал в виде прикрепленного к мембране клетки комплемента запускает быстрые реакции, направленные на разрушение такой клетки. Скорость этих реакций обусловлена усилением, возникающим вследствие последовательной протеолитической активации молекул комплемента, которые сами по себе являются протеазами. После того, как белки комплемента прикрепились к микроорганизму, запускается их протеолитическое действие, что, в свою очередь, активирует другие протеазы системы комплемента, и так далее. Таким образом возникает каскадная реакция, усиливающая исходный сигнал при помощи управляемой положительной обратной связи. В результате каскада образуются пептиды, привлекающие иммунные клетки, усиливающие проницаемость сосудов и опсонизирующие поверхность клетки, помечая её «к уничтожению».

Кроме того, отложение факторов комплемента на поверхности клетки может напрямую разрушать её посредством разрушения цитоплазматической мембраны.

Существуют три пути активации комплемента: классический, лектиновый и альтернативный. За неспецифическую реакцию врождённого иммунитета без участия антител отвечают лектиновый и альтернативный пути активации комплемента. У позвоночных комплемент также участвует в реакциях специфического иммунитета, при этом его активация обычно происходит по классическому пути.

Клеточные факторы врождённого иммунитета

Лейкоциты (белые кровяные тельца) часто ведут себя подобно независимым одноклеточным организмам, и представляют собой главное клеточное звено врождённого (гранулоциты и макрофаги) и приобретённого (в первую очередь лимфоциты, но их действия тесно связаны с клетками врождённой системы) иммунитета. К клеткам, воплощающим неспецифическую («врождённую») иммунную реакцию, относятся фагоциты (макрофаги, нейтрофилы и дендритные клетки), тучные клетки, базофилы, эозинофилы и естественные киллеры. Эти клетки распознают и уничтожают чужеродные частицы путём фагоцитоза (заглатывания и последующего внутриклеточного переваривания) либо, в случае крупных чужеродных тел (например, паразитов или крупных опухолевых клеток), путём выделения разрушительных частиц при непосредственном контакте.Кроме того, осуществляющие неспецифический иммунитет клетки являются важными посредниками в процессе активации механизмов приобретённого иммунитета.

Фагоциты

Фагоцитоз представляет собой важную особенность клеточного звена врождённого иммунитета, которую осуществляют клетки, называемые фагоцитами, которые "заглатывают" чужеродные микроорганизмы или частицы. Фагоциты обычно циркулируют по организму в поисках чужеродных материалов, но могут быть призваны в определённое место при помощи цитокинов. После поглощения чужеродного микроорганизма фагоцитом он оказывается в ловушке внутриклеточного пузырька, который называется фагосомой. Фагосома сливается с другим пузырьком - лизосомой, в результате чего формируется фаголизосома. Микроорганизм погибает под воздействием пищеварительных ферментов, либо в результате дыхательного взрыва, при котором в фаголизосому высвобождаются свободные радикалы. Фагоцитоз эволюционировал из способа получения захвата питательных веществ, но эта роль у фагоцитов была расширена, став защитным механизмом, направленным на разрушение патогенных возбудителей.[31] Фагоцитоз, вероятно, представляет собо наиболее старую форму защиты макроорганизма, поскольку фагоциты обнаруживаются как у позвоночных, так и у беспозвоночных животных.

К фагоцитам относятся такие клетки, как мононуклеарные фагоциты (в частности — моноциты и макрофаги), дендритные клетки и нейтрофилы. Фагоциты способны связывать микроорганизмы и антигены на своей поверхности, а затем поглощать и уничтожать их. Эта функция основана на простых механизмах распознавания, позволяющих связывать самые разнообразные микробные продукты, и относится к проявлениям врождённого иммунитета. С появлением специфического иммунного ответа мононуклеарные фагоциты играют важную роль в его механизмах путём представления антигенов T-лимфоцитам. Для эффективного уничтожения микробов фагоцитам требуется активация.

Нейтрофилы и макрофаги представляют собой фагоциты, которые путешествуют по организму в поисках проникших сквозь первичные барьеры чужеродных микроорганизмов. Нейтрофилы обычно обнаруживаются в крови и представляют собой наиболее многочисленную группу фагоцитов, обычно представляющую около 50%-60% общего количества циркулирующих лейкоцитов. Во время острой фазы воспаления, в частности, в результате бактериальной инфекции, нейтрофилы мигрируют к очагу воспаления. Этот процесс называется хемотаксисом. Они обычно являются первыми клетками, реагирующими на очаг инфекции. Макрофаги представляют собой клетки многоцелевого назначения, обитающие в тканях и производящие широкий спектр биохимических факторов, включая ферменты, белки системы комплемента и регуляторные факторы, например интерлейкин-1. Кроме того, макрофаги выполняют роль уборщиков, избавляя организм от изношеных клеток и другого мусора, а также роль антиген-презентирующих клеток, активирующих звенья приобретённого иммунитета.

Дендритные клетки представляют собой фагоциты в тканях, которые соприкасаются с внешней средой, то есть расположены они, главным образом, в коже, носу, лёгких, желудке и кишечнике. Они названы так, поскольку напоминают дендриты нейронов наличием многочилсенных отростков, однако дендритные клетки никоим образом не связаны с нервной системой. Дендритные клетки служат связующим звеном между врождённым и приобретённым иммунитетом, поскольку они представляют антиген T-клеткам, одному из ключевых типов клеток приобретённого иммунитета.[36]

Вспомогательные клетки

Вспомогательными клетками считаются тучные клетки, базофилы, эозинофилы, тромбоциты. Также в иммунной защите участвуют соматические клетки различных тканей организма. Тучные клетки находятся в соединительной ткани и слизистых оболочках и участвуют в регуляции воспалительной реакции.[37] Они очень часто связаны с аллергией и анафилаксией.[34] Они во многом напоминают базофилы - одну из малочисленных подгрупп зернистых лейкоцитов. Базофилы и эозинофилы родственны нейтрофилам. Эозинофилы секретируют биохимические медиаторы, которые участвуют в защите от крупных многоклеточных паразитов, а также играют роль в аллергических реакциях, например при бронхиальной астме. Естественные киллеры (или натуральные, или нормальные, от англ. Natural killer) представляют собой лейкоциты группы лимфоцитов, которые атакуют и уничтожают опухолевые клетки, или инфицированные вирусами клетки.

Приобретённый иммунитет

Система приобретённого иммунитета появилась в ходе эволюции низших позвоночных. Она обеспечивает более интенсивный иммунный ответ, а также иммунологическую память, благодаря которой каждый чужеродный микроорганизм «запоминается» по уникальным для него антигенам.[40] Система приобретённого иммунитета антигенспецифична и требует распознавания специфических чужих («не своих») антигенов в процессе, называемом презентацией антигена. Специфичность антигена позволяет осуществлять реакции, которые предназначены конкретным микроорганизмам или инфицированным ими клеткам. Способность к осуществлению таких узконаправленных реакций поддерживается в организме «клетками памяти». Если макроорганизм инфицируется микроорганизмом более одного раза, эти специфические клетки памяти используются для быстрого уничтожения такого микроорганизма.

Лимфоциты

Клетки иммунной системы, на которые возложены ключевые функции по осуществлению приобретённого иммунитета, относятся к лимфоцитам, которые являются подтипом лейкоцитов. Большая часть лимфоцитов отвечает за специфический приобретённый иммунитет, так как могут распознавать возбудителей инфекции внутри или вне клеток, в тканях или в крови.

Основными типами лимфоцитов являются B-клетки и T-клетки, которые происходят из плюрипотентных гемопоэтических стволовых клеток; у взрослого человека они образуются в костном мозге,[26] а T-лимфоциты дополнительно проходят часть этапов дифференцировки в тимусе. B-клетки отвечают за гуморальное звено приобретённого иммунитета, то есть вырабатывают антитела, в то время как T-клетки представляют собой основу клеточного звена специфического иммунного ответа.

На этапе развития лимфоциты проходят отбор: остаются только значимые с точки зрения защиты организма, а также те, которые не несут угрозы собственным тканям организма. Параллельно с этим процессом лимфоциты разделяются на группы, способные выполнять ту или иную функцию защиты. Существуют разные виды лимфоцитов. В частности, по морфологическим признакам их разделяют на малые лимфоциты и большие гранулярные лимфоциты (БГЛ). По структуре внешних рецепторов среди лимфоцитов выделяют, в частности, B-лимфоциты и T-лимфоциты.

Как B-, так и T-клетки несут на своей поверхности рецепторные молекулы, которые распознают специфические мишени. Рецепторы представляют из себя как бы «зеркальный отпечаток» определённой части чужеродной молекулы, способный присоединяться к ней образуя ряд химических связей. При этом одна клетка может содержать рецепторы только для одного вида антигенов.

Связь T-клеточного рецептора с молекулами главного комплекса гистосовместимости I и II класса, презентирующей антиген (указан красным)

T-клетки распознают чужеродные («не-свои») мишени, такие как патогенные микроорганизмы, только после того, как антигены (специфические молекулы чужеродного тела) будут обработаны и презентированы в сочетании с собственной («своей») биомолекулой, которая называется молекулой главного комплекса гистосовместимости (англ. main histocompatibility complex, MHC). Среди T-клеток различают ряд подтипов, в частности, Т-киллеры, Т-хелперы и Регуляторные Т-клетки.

T-киллеры распознают только антигены, которые объединены с молекулами главного комплекса гистосовместимости I класса, в то время как T-хелперы распознают только антигены, расположенные на поверхности клеток в сочетании с молекулами главного комплекса гистосовместимости II класса. Это различие в презентации антигена отражает разные роли указанных двух типов T-клеток. Другим, менее распространённым подтипом T-клеток, являются γδ T-клетки, которые распознают неизмененные антигены, не связанные с рецепторами главного комплекса гистосовместимости.

У T-лимфоцитов круг задач весьма широк. Часть из них — регуляция приобретённого иммунитета с помощью специальных белков (в частности, цитокинов), активация B-лимфоцитов для образования антител, а также регуляция активации фагоцитов для более эффективного разрушения микроорганизмов. Эту задачу выполняет группа T-хелперов. За разрушение собственных клеток организма путём выделения цитотоксичных факторов при непосредственном контакте отвечают T-киллеры, которые действуют специфически.

В отличие от T-клеток, B-клетки не нуждаются в обработке антигена и экспрессии его на поверхности клетки. Их рецепторы к антигену представляют собой фиксированные на поверхности B-клетки антителоподобные белки. Каждая прошедшая дифференцировку линия B-клеток экспрессирует уникальное только для неё антитело, и никакое другое. Таким образом, полный набор антигенных рецепторов всех B-клеток организма представляет все антитела, которые организм может вырабатывать. Функция B-лимфоцитов заключается прежде всего в выработке антител — гуморального субстрата специфического иммунитета —, действие которых направлено прежде всего против внеклеточно расположенных возбудителей.

Кроме того, существуют лимфоциты, неспецифически проявляющие цитотоксичность — естественные киллеры.

T-киллеры

T-киллеры напрямую атакуют другие клетки, несущие на своей поверхности чужеродные или аномальные антигены.

Т-киллеры представляют собой подгруппу T-клеток, функцией которых является разрушение собственных клеток организма, инфицированных вирусами или другими патогенными внутриклеточными микроорганизмами,[либо клетки, которые повреждены или неверно функционируют (например, опухолевые клетки). Как и B-клетки, каждая конкретная линия T-клеток распознает только один антиген. T-киллеры активируются при соединении своим T-клеточным рецептором (ТКР) со специфическим антигеном в комплексе с рецептором главного комплекса гистосовместимости I класса другой клетки. Распознавание этого комплекса рецептора гистосовместимости с антигеном осуществляется при участии расположенного на поверхности T-клетки вспомогательного рецептора CD8. В лабораторных условиях T-клетки обычно выявляют именно по экспрессии CD8. После активации T-клетка перемещается по организму в поисках клеток, на которых белок I класса главного комплекса гистосовместимости содержит последовательность нужного антигена. При контакте активированной T-киллера с такими клетками она выделяет токсины, которые образуют отверстия в цитоплазматической мембране клеток-мишеней, в результате ионы, вода и токсин свободно перемещаются в клетку-мишень и из неё. В результате клетка-мишень погибает. Разрушение собственных клеток T-киллерами важно, в частности, для предотвращения размножения вирусов. Активация T-киллеров жестко управляется и обычно требует очень сильного сигнала активации от комплекса белка гистосовместимости с антигеном, либо дополнительной активации факторами T-хелперов.

T-хелперы

Т-хелперы регулируют реакции как врожденного, так и приобретенного иммунитета, и позволяют определять тип ответа, который организм окажет на конкретный чужеродный материал. Эти клетки не проявляют цитотоксичности и не участвуют в уничтожении инфицированных клеток или непосредственно возбудителей. Вместо этого, они управляют иммунным ответом, направляя другие клетки на выполнение этих задач.

T-хелперы экспрессируют T-клеточные рецепторы (ТКР), которые распознают антигены, связанные с молекулами II класса главного комплекса гистосовместимости. Комплекс молекулы главного комплекса гистосовместимости с антигеном также распознается корецептором клеток-хелперов CD4, который привлекает внутриклеточные молекулы T-клетки (например, Lck), ответственные за активацию T-клетки. T-хелперы обладают меньшим чувствительностью к комплексу молекулы главного комплекса гистосовместимости и антигена, чем T-киллеры, то есть для активации T-хелпера требуется связывание гораздо большего количества его рецепторов (около 200–300) с комплексом молекулы гистосовместимости и антигена, в то время как T-киллеры могут быть активированы после связывания с одним таким комплексом. Активация T-хелпера также требует более продолжительного контакта с антиген-презентирующей клеткой. Активация неактивного T-хелпера приводит к высвобождению им цитокинов, которые оказывают влияние на активность многих видов клеток. Цитокиновые сигналы, создаваемые T-хелперами, усиливают бактерицидную функцию макрофагов и активность T-киллеров. Кроме того, активация T-хелперов вызывает изменения в экспрессии молекул на поверхности T-клетки, в частности лиганда CD40 (также известного под обозначением CD154), что создает дополнительные стимулирующие сигналы, обычно требуемые для активации вырабатывающих антитела B-клеток.

гамма-дельта T-клетки

5-10% T-клеток несут на своей поверхности ТКРгамма-дельта и обозначаются как гамма-дельта T-клетки.

B-лимфоциты и антитела

Антиген-презентирующие клетки

Иммунологическая память

Иммунологическая память - это способность иммунной системы отвечать более быстро и эффективно на антиген (патоген), с которым у организма был предварительный контакт.

Такая память обеспечивается предсуществующими антигенспецифическими клонами как В-клеток , так и Т-клеток , которые функционально более активны в результате прошедшей первичной адаптации к определённому антигену.

Пока неясно, устанавливается ли память в результате формирования долгоживущих специализированных клеток памяти или же память отражает собой процесс рестимуляции лимфоцитов постоянно присутствующим антигеном, попавшим в организм при первичной иммунизации.

Под иммунитетом (от лат. Immunitas - освобождение, избавление от чего-либо) в биологии и медицине понимают комплекс реакций организма, направленных на сохранение его структурной и функциональной целостности при воздействии на организм генетически чужеродных веществ, поступающих как извне, так и образующихся внутри организма. Для поддержания и сохранения постоянства внутренней среды организма, так называемого гомеоетаза, у позвоночных сформировалась специальная иммунная система, состоящая из лимфоидной ткани. К генетически чужеродным веществам относится огромное по разнообразию число биологически активных макромолекул, способных влиять на биологические процессы организма. Как правило, эти чужеродные вещества имеют органическое происхождение (белки, полисахариды и их комплексы, нуклеиновые кислоты); они получили название антигенов. Чужеродные вещества по своей структуре отличаются от собственных антигенных макромолекул, из которых состоит организм, так как последние генетически детерминированы, т.е. наследственно закреплены за каждым видом и индивидом. Именно в связи с этим чужеродные вещества способны нарушить в организме биохимические функции и процессы, приводящие к структурным и функциональным изменениям.

Количество антигенов, окружающих человека, огромно. Это белки, полисахариды или их комплексы с другими веществами, имеющие растительное, животное, в том числе и микробное, происхождение, а также искусственно синтезированные химические вещества. Антигены могут попадать в организм через дыхательные пути, пищеварительный тракт, всасываться через кожные и слизистые покровы. Антигены, не свойственные организму, могут образовываться также в процессе жизнедеятельности в результате того или иного патологического процесса (например, возникновение опухолевых

Основная функция иммунной системы - распознавание «чужих» антигенов, т.е. способность отличить «чужой» антиген от «своего» и обезвредить.

 

Иммунология и ее задачи

Изучением сущности и функционирования иммунной системы занимается наука иммунология. Иммунология - это общебиологическая и медицинская наука, изучающая способы и механизмы защиты организма от генетически чужеродных веществ (т.е. антигенов) экзогенного и эндогенного происхождения с целью поддержания гомеостаза, структурной и функциональной целостности организма, индивидуальной и видовой самостоятельности.

В зависимости от способа и объекта познания иммунологию можно разделить на общую и частную. Общая иммунология изучает процессы иммунитета на молекулярном, клеточном и организменном уровнях, генетику и эволюцию иммунитета, регуляцию иммунитета на всех уровнях. Частная иммунология изучает способы и методы профилактики, диагностики и лечения инфекционных болезней (иммунопрофилактика, вакцинология); злокачественных опухолей (иммуноонкология); условия, способствующие пересадке чужеродных органов и тканей (трансплантационная иммунология); щенные реакции на антигены (аллергология, иммунопатология); влияние на иммунную систему факторов окружающей среды (экологическая иммунология) и др.

Более 150 лет назад английский врач Э. Дженер впервые успешно применил для предохранения от оспы человека вакцинацию вирусом коровьей оспы. Однако это наблюдение было чисто эмпирическим. Поэтому возникновение иммунологии как науки связано с именами выдающегося французского ученого Л.Пастера (1822-1895), который заложил принципы вакцинации и создания невосприимчивости к инфекционным болезням, а также русского ученного И.И.Мечникова, открывшего явления фагоцитоза и по праву считающего основоположником клеточной иммунологии.

Большую роль в развитии иммунологии сыграл немецкий ученый-химик П.Эрлих, разработавший гуморальную теорию иммунитета и учение об антителах. – Ж. Борде и Н.Ф.Чистович, описавшие тканевые антигены и таким образом положившие начало трансплантационной иммунологии; австрийский ученый К. Ланднлтейнер, открывший изоантигены и группы крови и являющийся основоположником иммуногенетики; П. Медавар и М. Гашек, открывшие явление толерантности; австралийский иммунолог Ф. Бернет, сформулировавший клонально-селекционную теорию иммунитета; Л.А.Зильбер, открывший антигены опухолей и стоявших у истоков иммуноонкологии, и ряд других ученых.

Современный этап развития иммунологии характеризуется огромными достижениями в области расшифровки молекулярно-генетических и клеточных механизмов иммунитета. К настоящему времени установлена структура антител (Д. Эдельман и Р. Портер); роль и основные механизмы функционирования Т- и В-лимфоцитов и макрофагов, а также кооперативные взаимодействия между ними; генетический контроль иммунного ответа (Ф. Бернет, Ж. Миллер, Б.Бенацерраф, Р. В. Петров и др.); механизмы регуляции иммунных взаимодействий (иммуноцитокины); роль тимуса как органа иммунитета; расшифрованы многие механизмы тканевой совместимости; создано учение об иммунодефицитах и иммунном статусе, получила развитие иммуногенетика.

Иммунология проникла буквально во все биологические и медицинские дисциплины, ею разрабатываются способы профилактики, диагностики и лечения инфекционных и неинфекционных болезней человека и животных.

О важном, биологическом и медицинском значении иммунологии свидетельствует тот факт, что за открытия в области иммунологии многие ученые удостоены Нобелевской премии.

 

Виды иммунитета

Различают несколько основных видов иммунитета. Наследственный иммунитет (врожденный, видовой) обусловлен выработанной в процессе филогенеза генетически закрепленной невосприимчивостью вида к данному антигену или микроорганизму; он связан с биологическими особенностями макро- и микроорганизма и характером их взаимодействия. Видовой иммунитет неспецифичен и может быть абсолютным (например, невосприимчивость животных к возбудителю ВИЧ-инфекции человека, к вирусам бактерии) и относительным (например, появление чувствительности к столбнячному токсину у нечувствительных к нему лягушек при повышении температуры тела).

Приобретенный иммунитет специфичен и не передается по наследству. Он формируется естественно и создается искусственно. Естественный приобретенный иммунитет появляется после перенесенного инфекционного заболевания (оспа, корь и др.) или при бытовых скрытых контактах с небольшими дозами микробных антигенов (так называемая бытовая иммунизация). Искусственный приобретенный иммунитет возникает при вакцинации.

Иммунитет бывает активный и пассивный. Активный иммунитет вырабатывается организмом в результате воздействия антигена на иммунную систему (например, при вакцинации). Пассивный иммунитет обусловлен антителами, передаваемыми от иммунной матери ребенку при рождении или путем введения иммунных сывороток, а также при пересадке иммунных клеток.

Активный иммунитет может быть гуморальным (обусловлен антителами), клеточным (обусловлен иммунокомпетентными клетками) и клеточно-гуморальным (обусловлен и антителами и иммунокомпетентными клетками).

Различают также иммунитет стерильный, сохраняющийся в отсутствие микроорганизма, и нестерильный, который существует только при наличии возбудителя в организме. Классическим примером нестерильного иммунитета является иммунитет при туберкулезе.

Иммунная система

Иммунная система представлена лимфоидной тканью. Это специализированная, анатомически обособленная ткань, разбросанная по всему организму. К лимфоидной ткани относятся тимус (зобная, или вилочковая, железа), селезенка, костный мозг, лимфатические узлы (групповые лимфатические фолликулы, миндалины, подмышечные, паховые и др.), а также циркулирующие в крови лимфоциты. Основными функциональными, клетками иммунной системы являются лимфоциты, подразделяющиеся на Т- и В-лимфоциты и их субпопуляции. Общее число лимфоцитов в человеческом организме достигает 10, а общая масса лимфоидной ткани составляет примерно 4-2 % от массы тела.

Лимфоидные органы делят на центральные (первичные) и периферические (вторичные). К центральным относят, например, тимус, костный мозг, небные миндалины, так как клетки этих лимфоидных образований осуществляют инструктивные функции, обеспечивая иммунологическую компетентность клеток-предшественников, а также выполняют регуляторные функции. К периферическим органам относят селезенку, лимфатические узлы и скопления лимфоидных тканей по всему организму. Клетки периферических органов непосредственно осуществляют реакции клеточного и гуморального иммунитета (образование антител, цитотоксическая, киллерная функция и др.) и поэтому называются иммунокомпетентными клетками (иммуноцитами).

Тимус - центральный орган лимфоцитопоэза позвоночных. В корковом веществе тимуса стволовые клетки костного мозга превращаются в тимоциты на разных стадиях дифференцировки (клетки-предшественники). По мере созревания они покидают тимус через лимфатические сосуды и попадают в кровь. Клеточный цикл протекает в тимусе в течение 4-6 ч, а полный обмен всей популяции тимоцитов завершается за 4-6 дней. Кроме того, в тимусе секретируются гормоноподобные вещества: тимозин, тимопоэтин и другие лимфоцитокины, способствующие созреванию Т-лимфоцитов, В-лимфоцитов или других клеток крови.

При удалении тимуса у взрослых, а также при старении снижается функция иммунитета.

Небные миндалины представляют собой скопление лимфоидных элементов глоточного кольца, защищают верхние дыхательные пути от возникновения воспалительных заболеваний и регулируют нормофлору полости рта и носоглотки.

Лимфатические узлы - мелкие округлые образования по ходу лимфатических сосудов; 95 % лимфоцитов в лимфатических узлах постоянно циркулируют в лимфатических и кровеносных сосудах.

В селезенке существуют Т- и В-зависимые зоны расположения лимфоцитов. В селезенке в основном концентрируются плазматические клетки продуценты антител.

Кровь относится к периферическим органам иммунитета. В ней циркулируют Т- и В-лимфоциты, полиморфно-ядерные лейкоциты. Лимфоциты составляют 30 % от числа лейкоцитов.

Родоначальницей большинства клеток крови, в том числе и лимфоцитов, является полипотентная стволовая клетка костного мозга (морфологически не идентифицируется), которая при дифференцировке и пролиферации может превращаться в предшественников Т- и В-лимфоцитов. Предшественники Т-лимфоцитов мигрируют в тимус, где под влиянием химозина, тимопоэтина и других медиаторов созревают и дифференцируются, образуя разновидности лимфоцитов: Т-хелперы, Т-супрессоры, Т-эффекторы. Предшественники В-лимфоцитов мигрируют в костный мозг, где превращаются в костномозговые В-лимфоциты, которые затем переходят в плазматические клетки, продуцирующие антитела.

Макрофаги, гранулоциты также происходят от общего предшественника - кроветворной стволовой клетки.

Ведущая эффекторная роль в деятельности иммунной системы принадлежит мигрирующим лимфоцитам.

Лимфоцит является функциональным элементом в реакциях клеточного иммунитета, предшественником плазматической клетки, продуцирующей иммуноглобулины, носителем иммунологической памяти, индуктором иммунологической толерантности (неотвечаемости на антиген).

Т-лимфоциты обеспечивают клеточные формы иммунного ответа (гиперчувствителъность замедленного типа, трансплантационный иммунитет, противоопухолевый иммунитет), а В-лимфоциты отвечают за гуморальный иммунитет (все виды антителообразования). Т- и В-системы лимфоцитов взаимодействуют между собой и макрофагальной системой, при этом Т-система по отношению к В-системе является регулирующей.

К мононуклеарным фагоцитам (макрофагам) относятся фагоциты, циркулирующие в периферической крови, а также тканевые макрофаги. Они образуются в костном мозге из полипотентной стволовой клетки, после нескольких стадий развития попадают в кровоток в виде моноцитов. Тканевые макрофаги формируются частично из моноцитов, а частично - в процессе пролиферации макрофагов.

Под микроскопом или путем окрашивания различать Т- и В-клетки невозможно - их можно различить только с помощью растровой электронной микроскопии. Для В-лимфоцитов характерна ворсинчатая поверхность, Т-клетки более гладкие, ворсинок очень мало.

Т-лимфоциты имеют несколько субпопуляций с различными физиологическими функциями.

Т-хелперы относятся к регулирующим клеткам. Получив от макрофагов информацию об антигене, Т-хелперы с помощью иммуноцитокинов передают сигнал, усиливающий пролиферацию Т и В-лимфоцитов нужных клонов, превращая их в активированные Т-эффекторы или плазматические антителопродцирующие клетки.

Т-супрессоры тоже относятся к регуляторам иммунного ответа. Эти клетки являются антагонистами Т-хелперов и блокируют развитие гуморального и клеточного иммунитета.

Т-эффекторы (или Т-киллеры) ответственны за клеточный иммунитет в различных его проявлениях: разрушают опухолевые клетки, трансплантированные клетки, мутировавшие клетки собственного организма, участвуют в гиперчувствительности замедленного типа. Это цитоцидные клетки, разрушающие клетки-мишени при непосредственном контакте за счет выделяемых ферментов-токсинов или в результате активации в клетках-мишенях лизосомальных ферментов.

Т-ампдифайеры - клетки, усиливающие действие тех или иных субпопуляций Т-лимфоцитов.

Нулевые клетки - лимфоциты без отличительных признаков Т- и В-клеток. Тот факт, что они встречаются среди лимфоцитов костного мозга в 50% случаев, а среди лимфоцитов крови в 5 % случаев, позволяет предположить, что это незрелые формы лимфоцитов, хотя и обладающие цитотокси-ческой активностью.

Существуют В- и Т-клетки памяти. Это долго живущие лимфоциты, сохраняющие после первичного контакта с антигеном информацию о нем в течение месяцев, годов, десятилетий. При вторичном попадании того же антигена происходит стимуляция этого клона клеток.

Таким образом, функции иммунитета осуществляют три вида иммуно-компетентных клеток: макрофаги, Т-лимфоциты и В-лимфоциты. Деятель» ность этих клеток, направленная на распознавание и уничтожение генетически чужеродных веществ, т. е. поддержание гомеостаза, осуществляется в содружестве друг с другом, в так называемом кооперативном взаимодействии. Кооперацию клеток осуществляют медиаторы, иммуноцитоксины и другие регуляторные вещества и механизмы.

Отдельно выделяют так называемый местный иммунитет, который защищает отдельные участки организма, например слизистые оболочки, от возбудителей инфекционных болезней. Он формируется при участии секреторного иммуноглобулина А и характеризуется более активным фагоцитозом.

Реакции и механизмы иммунитета

Защитные функции, т„ е. поддержание гомеостаза при антигенных воздействиях, иммунная система осуществляет с помощью комплекса сложных взаимосвязанных реакций, носящих как специфический, т. е. присущий только иммунной системе, так и неспецифический (общефизиологический) характер. Поэтому все формы иммунного реагирования и факторы защиты организма подразделяют на специфические и неспецифические. К неспецифическим факторам резистентности относят механические (кожа и слизистые оболочки), физико-химические (ферменты, реакция среды и др.) факторы, а также иммунобиологическую защиту, осуществляемую нормальными неиммунными клетками (фагоцитами, естественными киллерами) и гуморальными компонентами (комплементом, интерфероном, некоторыми белками крови). К специфическим факторам защиты относятся следующие формы реагирования иммунной системы: 1) антителообразование; 2) иммунный фагоцитоз и киллерная функция иммунных макрофагов и лимфоцитов; 3) гиперчувствительность немедленного типа (1ГНТ); 4) гиперчувствительность замедленного типа (ГЗТ); 5) иммунологическая память; 6) иммунологическая толерантность. Иногда к формам иммунологического реагирования относят идиотип - антиидиотипическое взаимодействие.

Неспецифические и специфические факторы защиты нельзя рассматривать изолированно, так как они функционируют во взаимодействии, составляя единую целостную систему защиты организма от антигенов. Однако они могут включаться в процесс защиты не одновременно и не все сразу. В зависимости от характера антигенного воздействия ведущими могут быть или одна, или несколько форм реагирования, некоторые при этом могут не проявляться. В этом заключается многообразие, экономность и эффективность действия иммунной системы. Например, при туберкулезе основное значение имеет киллерная функция Т-лимфоцитов, а в противовирусной защите ведущую роль играет противовирусный белок, вырабатываемый клетками иммунной системы, - интерферон и т.д.

Факторы неспецифической защиты организма

Механические факторы. Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Они все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т.д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия. Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы. Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитичехкии фермент разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний.

Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов неспецифической резистентности, направленных на устранение чужеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма. К ним относятся белки системы комплемента, интерферон, трансферрин, р-лизины, фибронектин и др.

Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. Р-Лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конкурирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться..

Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, пораженных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор.

В поддержании резистентности организма имгеет большое значение и нормальная микрофлора организма.

 

Фагоцитоз

Фагоцитоз (от греч. phage - пожираю и eytos - клетка) представляет собой процесс поглощения и переваривания антигенных веществ, в том числе микроорганизмов, клетками мезодермального происхождения, названными фагоцитами. К этой системе относят тканевые макрофаги — эпителиоидные клетки, звездчатые ретикулоэндотелиоциты (клетки Купфера), альвеолярные и перитнеальные макрофаги, находящиеся в альвеолах и полости брюшины, белые оростчатые эпидермоциты кожи (клетки Лангерганса) и др.

Функции макрофагов чрезвычайно разнообразны. Они первые реагируют на чужеродное вещество, являясь специализированными клетками, поглощающими и уничтожающими в организме чужеродные субстанции. Кроме того, макрофага вырабатывают многие биологически активные вещества - ферменты (в том числе лизоцим, пероксидазу, эстеразу), белки комплемен-та, иммуномодуляторы. Наличие на поверхности макрофагов рецепторов, а также система медиаторов обеспечивает их взаимодействие с Т- и В-лимфоцитами. При этом макрофаги активируют защитные функции Т-лимфоцитов.

Роль фагоцитоза. Фагоцитоз является важнейшей защитной реакцией. Фагоциты захватывают бактерии, грибы, вирусы и инактивируют их посредством набора ферментов и способности сехретировать Н2О2 и другие перекисные соединения, образующие активный кислород (завершенный фагоцитоз). Однако в некоторых случаях захваченные - фагоцитом микроорганизмы выживают и размножаются в нем (например, гонококки, туберкулезная палочка, возбудитель ВИЧ-инфекции и др.). В таких случаях фагоцитоз называют незавершенным о

Фагоцитоз усиливается антителами-опеонинами. Фагоцитоз опсонизи-рованных антигенов называют иммунным. Для характеристики активности фагоцитоза введен фагоцитарный показатель. Для определения его подсчитывают под микроскопом число бактерий, поглощенных одним фагоцитом. Фагоцитоз играет большую роль в противобактериальной, противогрибковой и противовирусной защите, поддержании резистентности организма к чужеродным веществам.

Комплемент

Природа комплемента. Комплемент представляет собой сложный комплекс белков сыворотки крови, реагирующих между собой в определенной последовательности и обеспечивающих участие антигенов и антител в клеточных и гуморальных реакциях иммунитета. Современное название комплементу дал П.Эрлих.

Комплемент состоит из 20 различающихся по физико-химическим свойствам белков сыворотки крови, его обозначают символом «С», а девять основных компонентов комплемента - цифрами: С1, С2, СЗ, С4, С5, ... С9. Каждый компонент имеет субъединицы, которые образуются при расщеплении; обозначаются они буквами: Clq, СЗа, СЗЬ и т. д. Белки комплемента являются глобулинами или гликонротеинами с молекулярной массой от 80 (С9) до 900 тыс. (С 1).

Комплемент имеет разнообразные функции и является одним из главных компонентов иммунной системы, В организме комплемент находится в неактивном состоянии и активируется обычно в момент образования комплекса антиген - антитело. После активации его действие носит каскадный характер и представляет серию протеолитических реакций, направленных на усиление иммунных клеточных реакций и активацию действия антител по устранению антигенов.

Система комплемента обеспечивает: а) цитолитическое и цито-токсическое действие антител на клетки-мишени благодаря образованию мембраноатакущего комплекса; б) активацию фагоцитоза в результате связывания с иммунными комплексами и адсорбции их рецепторами макрофагов; в) участие в индукции иммунного ответа вследствие обеспечения процесса доставки антигена макрофагами; г) участие в реакциях анафилаксии, а также в развитии воспаления вследствие того, что некоторые фрагменты комплемента обладают хемотаксической активностью.

Следовательно, комплемент обладает многосторонней иммунологической активностью.

Интерферон

Природа интерферона. Интерферон представляет собой белок, обладающий противовирусным, противоопухолевым и иммуномодулирующим свойствами, вырабатываемый многими клетками в ответ на внедрение вируса или сложных биополимеров.

Семейство интерферонов включает более 20 белков, различающихся по физико-химическим свойствам. Все они объединены в четыре группы по источнику происхождения: ά, β, γ и ω. ά-Интерферон вырабатывают В-лимфоциты; его получают из лейкоцитов крови, поэтому называют лейкоцитарным. Р-Интерферон получают при заражении вирусами культуры клеток фибробластов человека и поэтому называют фибробластным. у-Интерферон получают из иммунных Т-лимфоцитов, сенсибилизированных антигенами, поэтому его называют иммунным. ω -Интерферон открыт недавно, его свойства мало изучены.

Противовирусное, антииролиферативное и иммуномодулирующее ден= ствие интерферонов не связано с непосредственным влиянием на вирусы или клетки, т. е. интерферон не действует вне клетки. Абсорбируясь на поверхности клетки или проникая внутрь клетки, он через геном клетки влияет на процессы репродукции вируса или пролиферацию клетки. Поэтому действие интерферона в основном профилактическое, но его используют и в лечебных целях.

Интерферон играет большую роль в поддержании резистентности к вирусам, поэтому его применяют для профилактики и лечения многих вирусных инфекций (грипп, аденовирусы, герпес, вирусный гепатит и др.).

 

Антигены

Антигены - это любые генетически чужеродные вещества (обычно биополимеры), которые, попав во внутреннюю среду организма или образуясь в организме, вызывают ответную специфическую иммунологическую реакцию, проявляющуюся синтезом антител, появлением сенсибилизированных лимфоцитов или возникновением толерантности к этому веществу, гиперчувствительности немедленного и замедленного типов иммунологической памяти. Антитела, вырабатываемые в ответ на введение антигена, специфически взаимодействуют с этим антигеном in vitro и in vivo, образуя комплекс антиген - антитело.

Антигены, вызывающие полноценный иммунный ответ, называются полными антигенами. Полными антигенами являются органические вещества микробного, растительного и животного происхождения. Химические элементы, простые и сложные неорганические соединения антигенностью не обладают. Антигенами могут быть как вредные, так и безвредные для организма вещества.

Антигенами являются также бактерии, грибы, простейшие, вирусы, клетки и ткани животных, попавшие во внутреннюю среду макроорганизма, а также клеточные стенки, цитоплазматические мембраны, рибосомы, митохондрии, микробные токсины, экстракты гельминтов, яды многих змей и пчел, природные белковые вещества, некоторые полисахаридные вещества микробного происхождения, растительные токсины и т. д.

Некоторые вещества самостоятельно не вызывают иммунного ответа, но приобретают эту способность при конъюгации с высокомолекулярными белковыми носителями или в смеси с ними. Такие вещества называют неполными антигенами, или гаптенами. Гаптенами могут быть химические вещества с малой молекулярной массой или более сложные химические вещества. Гаптен является частью полного или конъюгированного антигена.

Наиболее выраженными антигенными свойствами обладают белки как биополимеры с выраженной генетической чужеродностью. Чем дальше друг от друга в филогенетическом развитии отстоят животные, тем большей антигенностью будут обладать их белки по отношению друг к другу. Это свойство белков используется для выявления филогенетического родства животных различных видов, а также в судебно-медицинской экспертизе для определения видовой принадлежности пятен крови и в пищевой промышленности.

На иммунный ответ влияет количество поступающего антигена: чем его больше, тем более выражен иммунный ответ. Однако при слишком большой дозе антигена может наступить иммунологическая толерантность, т. е. отсутствие ответа организма на антигенное раздражение.

Выделяют, например, гетероантигены и аллоантитены. Гетероантигены - это общие антигены, встречающиеся у человека и разных видов животных. Они обнаружены у человека и некоторых видов бактерий. Например, возбудитель чумы и эритроциты человека с 0 группой крови имеют общие антигены. В результате иммунокомпетеитные клетки этих людей не реагируют на возбудителя чумы как на чужеродный антиген и не развивают полноценной иммунологической реакции.

Аллоантигены (изоантигены) - различные антигены внутри одного вида. В настоящее время в эритроцитах человека обнаружено более 70 антигенов, которые дают около 200 000 сочетаний. Для практического здравоохранения решающее значение имеют группы крови в системе AB0 и резус-антиген. В 6-й паре хромосом человека располагаются трансплантационные антигены BDLA (Human Leucocyte Antigens), детерминирующие тканевую ш-вместимость при пересадке тканей и органов.

Клетки злокачественных опухолей также содержат антигены, отличающиеся от антигенов - нормальных клеток, что используется для иммунодиагностики опухолей.

В процессе эволюции антигенная структура некоторых микроорганизмов может меняться. Особенно большой изменчивостью антигенной структуры обладают вирусы (гриппа, ВИЧ).

Таким образом, антигены, как генетически чужеродные вещества, осуществляют запуск иммунной системы, приведение ее в функционально активное состояние, выражающееся в проявлении тех или иных иммунологических реакций, направленных на устранение неблагоприятного воздействия антигена.

 

Антителообразование

В ответ на введение антигена иммунная система вырабатывает антитела - белки, способные специфически соединяться с антигеном, вызвавшим их образование, и таким образом участвовать в иммунологических реакциях. Относятся антитела к гамма-глобулинам, т. е. наименее подвижной в электрическом поле фракции белков сыворотки крови. В организме гамма-глобулины вырабатываются особыми клетками - плазмоцитами. Количество гамма-глобулина в сыворотке крови составляет примерно 30 % от всех белков крови. Гамма-глобулины, несущие функции антител, получили название иммуноглобулинов и обозначаются символом Ig.

Функции антител. Первичная функция антител состоит во взаимодействии их активных центров с комплементарными им детерминантами антигенов. Вторичная функция антител состоит в способности их: а) связывать антиген с целью его нейтрализации и элиминации из организма, т. е. принимать участие в формировании защиты от антигена; б) участвовать в распознавании «чужого» антигена; в) обеспечивать кооперацию иммуыокомпе-тентных клеток (макрофагов, Т- и В-лимфоцитов); г) участвовать в различных формах иммунного ответа (фагоцитозе, киллерной функции, ГНТ, ГЗТ, иммунологической толерантности, иммунологической памяти).

Белки иммуноглобулинов по химическому составу относятся к глико-протеидам, так как состоят из протеина и Сахаров; построены из 18 аминокислот. Имеют видовые отличия, связанные главным образом с набором аминокислот. Молекулярная масса иммуноглобулинов находится в пределах 150-900 кД.

Способность к образованию антител появляется во внутриутробном периоде у 20-недельного эмбриона, после рождения начинается собственная продукция иммуноглобулинов, которая увеличивается до наступления зрелого возраста и несколько снижается к старости. Динамика образования антител имеет различный характер в зависимости от силы антигенного воздействия (дозы антигена), частоты воздействия антигена, состояния организма и его иммунной системы. При первичном и повторном введении антигена динамика антителообразования имеет различный характер и протекает в несколько стадий. Выделяют латентную, логарифмическую, стационарную фазу и фазу снижения. В латентной фазе происходят переработка и предетавде-нне антигена иммунокомпетентным клеткам, размножение клоеа клеток, специализированного на выработку антител к данному антигену, начинается синтез антител. В этот период антитела в крови не обнаруживаются. Во время логарифмической фазы синтезированные антитела высвобождаются из плазмоцитов и поступают в лимфу и кровь. В стационарной фазе количество антител достигает максимума и стабилизируется, затем наступает фаза снижения уровня антител. При первичном введении антигена (первичный иммунный ответ) латентная фаза составляет 3-5 сут., логарифмическая фаза -7-15 сут., стационарная фаза - 15-30 сут. и фаза снижения - 1-6 мес и более. В отличие от первичного иммунного ответа при вторичном введении антигена (вторичный иммунный ответ) латентный период укорочен до нескольких часов или 1-2 сут., логарифмическая фаза характеризуется быстрым нарастанием и значительно более высоким уровнем антител, который в последующих фазах длительно удерживается и медленно снижается, иногда в течение нескольких лет.

Иммунологическая память

Иммунологической памятью называют способность организма при повторной встрече с одним и тем же антигеном реагировать более активным и более быстрым формированием иммунитета, т. е. реагировать по типу вторичного иммунного ответа. Повышенная чувствительность, или иммунореак-тивность, к антигену сохраняется при этом годами и даже десятилетиями.

Иммунологическая память распространяется как на гуморальный (выработка антител), так и клеточный иммунитет. Иммунологическая память обусловлена деятельностью В-лимфоцитов (гуморальный иммунитет) и Т-лимфоцитов (клеточный иммунитет). Феномен иммунологической памяти используется в практике вакцинации людей,

Иммунологическая толерантность

Иммунологическая толерантность - явление противоположное иммунологической памяти. В этом случае в ответ на повторное введение антигена организм вместо энергичной быстрой выработки иммунитета проявляет ареактивность, не отвечает иммунной реакцией, т. е. толерантен антигену. Толерантность специфична, так как проявляется только к тому антигену, с которым организм уже встречался; она может быть полной или частичной, вырабатываться только к одной какой-либо или ко всем иммунным реакциям.

Толерантность бывает врожденная (естественная) и приобретенная. Примером врожденной толерантности является отсутствие реакции иммунной системы на свои собственные антигены. Приобретенную толерантность можно создать, вводя в организм вещества, подавляющие иммунитет, т. е. иммунодепрессанты, а также если вводить аллогенный антиген во время эмбрионального периода или в первые дни после рождения животного или человека.

На развитие толерантности влияют возраст, степень чужеродности антигена для данного организма, доза антигена, длительность пребывания его в организме. Антигены, вызывающие толерантность, называют толерогенами. Ими могут быть практически все антигены, однако наибольшей толерогенно-стью обладают полисахаридные антигены, так как они в меньшей степени метаболизируются в организме.

Явление иммунологической, толерантности используется для решении важных проблем медицины, таких как пересадка органов и тканей, подавление аутоиммунных реакций, аллергий и других состояний, связанных с иммунодепрессией.

 


21.01.2015; 20:21
хиты: 157
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь