пользователей: 21241
предметов: 10456
вопросов: 177505
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

28. Элементы подгруппы меди. Общая характеристика простых веществ. Медь, серебро и золото. Нахождение в природе. Физические и химические свойства. Получение.

Подгруппа меди — химические элементы побочной подгруппы I группы. В группу входят переходные металлы, из которых традиционно изготавливают монеты:медь Cu, серебро Ag и золото Au. На основании строения электронной конфигурации, к этой же группе относится и рентгений Rg, но в «монетную группу» он не попадает (это недолго живущий трансактинид с периодом полураспада 3.6 сек). Название монетные металлы официально не применяется к этой группе элементов, поскольку для изготовления монет используются и другие металлы, такие как алюминий, свинец, никель, нержавеющая сталь и цинк.

Все элементы подгруппы являются относительно химически инертными металлами. Характерны также высокие значения плотности, но оносительно небольшиетемператур плавления и кипения, высокая тепло- и электропроводность.

Особенностью элементов подгруппы является наличие заполненного предвнешнего -подуровня, достигаемое за счёт перескока электрона с ns-подуровня. Причина такого явления заключается в высокой устойчивости полностью заполненного d-подуровня. Эта особенность обусловливает химическую инертность простых веществ, их химическую неактивность, поэтому золото и серебро называют благородными металлами.

Медь встречается в природе как в соединениях, так и в самородном виде. Промышленное значение имеют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Вместе с ними встречаются и другие минералы Наиболее известные из месторождений такого типа — Удокан в Забайкальском крае, Жезказган в Казахстане, меденосный пояс Центральной Африки и Мансфельд в Германии. Другие самые богатые месторождения меди находятся в Чили (Эскондида и Кольяуси) и США (Моренси).

Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %.

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную отсерой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). 

Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

В соединениях медь проявляет две степени окисления: +1 и +2. Первая из них склонна к диспропорционированию и устойчива только в нерастворимых соединениях (Cu2O, CuCl, CuI и т. п.) или комплексах (например, [Cu(NH3)2]+). Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3.

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не вступает в реакцию с водой и разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированнымисерной иазотнойкислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидаминеметаллов. Вступает в реакцию при нагревании с галогеноводородами.

На влажном воздухе медь окисляется, образуя основный карбонат меди(II):
Реагирует с концентрированной холодной серной кислотой:
С концентрированной горячей серной кислотой:
С безводной серной кислотой при 200 °C:
C разбавленной серной кислотой при нагревании в присутствии кислорода воздуха:
Реагирует с концентрированной азотной кислотой:
С разбавленной азотной кислотой:
С царской водкой:
С концентрированной горячей соляной кислотой:
C разбавленной хлороводородной кислотой в присутствии кислорода:
С газообразным хлороводородом при 500—600 °C:
С бромоводородом:
Также медь реагирует с концентрированной уксусной кислотой в присутствии кислорода:
Медь растворяется в концентрированном гидроксиде амония,с образованием аммиакатов :
Окисляется до оксида меди(I) при недостатке кислорода и 200 °C и до оксида меди(II), при избытке кислорода и температурах порядка 400—500 °C:                   Медный порошок реагирует с хлором, серой (в жидком сероуглероде) и бромом (в эфире), при комнатной температуре:
При 300—400 °C реагирует с серой и селеном:
C оксидами неметаллов:
Медь реагирует с цианидом калия с образованием дицианокупрата(I) калия, щелочи и водорода:
С концентрированной соляной кислотой хлоратом калия:
 

Медь получают из медных руд и минералов. Основные методы получения меди — пирометаллургия, гидрометаллургия и электролиз.

Пирометаллургический метод заключается в получении меди из сульфидных руд, (например CuFeS2):
Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом:
Электролиз раствора сульфата меди:
 

Серебро- ковкий, пластичный благородныйметалл серебристо-белого цвета. Чистое серебро — довольно тяжёлый (легче свинца, но тяжелее меди), необычайно пластичный серебристо-белый металл. Тонкая серебряная фольга в проходящем свете имеет фиолетовый цвет. C течением времени металл тускнеет, реагируя с содержащимися в воздухе следами сероводорода и образуя налёт сульфида, чья тонкая пленка придает тогда металлу характерную розоватую окраску. Обладает самой высокой теплопроводностью среди металлов. При комнатной температуре имеет самую высокую электропроводность среди всех известных металлов. Относительно тугоплавкий металл.

Хим свойства:Серебро, будучи благородным металлом, отличается относительно низкой реакционной способностью, оно не растворяется всоляной и разбавленной серной кислотах. Однако в окислительной среде (в азотной, горячей концентрированной серной кислоте, а также в соляной кислоте в присутствии свободного кислорода) серебро растворяется:
Растворяется оно и в хлорном железе, что применяется для травления:

Серебро также легко растворяется в ртути, образуя амальгаму (жидкий сплав ртути и серебра).

Серебро не окисляется кислородом даже при высоких температурах, однако в виде тонких плёнок может быть окислено кислородной плазмой или озоном при облучении ультрафиолетом. Во влажном воздухе в присутствии даже малейших следов двухвалентной серы (сероводород, тиосульфаты, резина) образуется налёт малорастворимого сульфида серебра, обуславливающего потемнение серебряных изделий:
В отсутствии кислорода:
Свободные галогены легко окисляют серебро до галогенидов:
 

Однако на свету эта реакция обращается, и галогениды серебра (кроме фторида) постепенно разлагаются.

При нагревании с серой серебро даёт сульфид.
 

Серебро, в отличие от золота, не растворяется в царской водке из-за образования пленки хлорида на его поверхности.

Наиболее устойчивой степенью окисления серебра в соединениях является +1. В присутствии аммиака соединения серебра (I) дают легко растворимый в воде комплекс [Ag(NH3)2]+. Серебро образует комплексы так же с цианидами, тиосульфатами. Комплексообразование используют для растворения малорастворимых соединений серебра, для извлечения серебра из руд. Более высокие степени окисления (+2, +3) серебро проявляет только в соединении с кислородом (AgO, Ag2O3) и фтором (AgF2, AgF3), такие соединения гораздо менее устойчивы, чем соединения серебра (I).

Соли серебра (I), за редким исключением (нитрат, перхлорат, фторид), нерастворимы в воде, что часто используется для определения ионов галогенов (хлора, брома, йода) в водном растворе.

Получение Серебра. Большая часть Серебра (около 80%) извлекается попутно из полиметаллических руд, а также из руд золота и меди. При извлечении Серебра из серебряных и золотых руд применяют метод цианирования - растворения Серебра в щелочном растворе цианида натрия при доступе воздуха: 2Ag + 4NaCN + O2 + H2O = 2Na[Ag(CN)2] + 2NaOH.

Из полученных растворов комплексных цианидов Серебро выделяют восстановлением цинком или алюминием: 2[Ag(CN)2]-+ Zn = [2Zn(CN)4]2- + 2Ag.

Золото — благородный металл жёлтого цвета. Чистое золото — мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает высокойтеплопроводностью и низким электрическим сопротивлением.

Золото — очень тяжёлый металл: плотность чистого золота равна 19,32 г/см. Среди металлов по плотности занимает шестое место. Высокая плотность золота облегчает его добычу. Самые простые технологические процессы, такие, как, например, промывка на шлюзах, могут обеспечить весьма высокую степень извлечения золота из промываемой породы.

Золото — очень мягкий металл. Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем — окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку.

Хим св-ва:Золото — один из самых инертных металлов, стоящий в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством кислот и не образует оксидов, поэтому его относят к благородным металлам, в отличие от обычных металлов, разрушающихся под действием кислот и щелочей. В XIV веке была открыта способность царской водкирастворять золото, что опровергло мнение об его химической инертности.Наиболее устойчивая степень окисления золота в соединениях +3, в этой степени окисления оно легко образует с однозарядными анионами (F−, Cl−. CN−) устойчивые плоские квадратные комплексы [AuX4]−. Относительно устойчивы также соединения со степенью окисления +1, дающие линейные комплексы [AuX2]−. Долгое время считалось, что +3 — высшая из возможных степеней окисления золота, однако, используя дифторид криптона, удалось получить соединения Au+5 (фторид AuF5, соликомплекса [AuF6]−). Соединения золота(V) стабильны лишь софтором и являются сильнейшими окислителями.

При взаимодействии атомарного фтора с пентафторидом золота были получены летучие фториды золота (VI) и (VII): AuF6 и AuF7. Они крайне неустойчивы, особенно AuF6, который дисмутирует с образованием AuF5 и AuF7[7].

Степень окисления +2 для золота нехарактерна, в веществах, в которых она формально равна 2, половина золота, как правило, окислена до +1, а половина — до +3, например, правильной ионной формулой сульфата золота(II) AuSO4 будет не Au2+(SO4)2−, а Au1+Au3+(SO4)2−2, однако обнаружены комплексы, в которых золото всё-таки имеет степень окисления +2.

Существуют соединения золота со степенью окисления −1, называемые ауридами. Например, CsAu (аурид цезия), Na3Au (аурид натрия)[8].

Из чистых кислот золото растворяется только в концентрированной селеновой кислоте при 200 °C:
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
Цианоаураты легко восстанавливаются до чистого золота:
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот («царская водка») золото растворяется с образованием хлораурат-иона уже при комнатной температуре:

Кроме того, золото растворяется в хлорной воде[9]. Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, образуя трибромид AuBr3.

Со фтором золото реагирует в интервале температур 300−400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.

Золото также растворяется в ртути, образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды золото-ртуть.

Известны золотоорганические соединения — например, этилдибромид золота или ауротиоглюкоза.

Промывка. Метод промывки основан на высокой плотности золота, благодаря которой в потоке воды минералы с плотностью меньше золота (а это почти все минералы земной коры) смываются, и металл концентрируется в тяжёлой фракции песка, которая называетсяшлихом. Этот процесс называется отмывкой шлиха или шлихованием. Метод амальгамации основан на способности ртути образовывать сплавы — амальгамы с различными металлами, в том числе и с золотом. В этом методе увлажнённая дроблёная порода смешивалась со ртутью и подвергалась дополнительному измельчению в мельницах — бегунных чашах. Амальгаму золота (и сопутствующих металлов) извлекали из получившегося шлама промывкой, после чего ртуть отгонялась из собранной амальгамы и использовалась повторно.

Регенерация.Осуществляется действием 10 % раствора щёлочи на растворы солей золота с последующим осаждением аффинажного золота на алюминий из горячего раствора гидроксида.


30.06.2014; 06:53
хиты: 2483
рейтинг:0
Естественные науки
химия
неорганическая химия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь