пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Генетика:
» Мітоз
» Мейоз
» Відмінності між мітозом і мейозом
» Закони Менделя
геодезія:
» Колімаційна похибка
» геодезія-це
» висоти точок місцевості
» види геодезичних знімань
» план карта профіль
» розграфлення топографічних карт
» умовні позначки
» рельєф
» зйомка ситуації
» бусоль
» теодоліт,теодолітне знімання
» теодолітні ходи
» нівелір
» нівелювання поверхні
» Кутові виміри. Принципи виміру кутів. Теодоліти.
» національна геодезична мережа
» Масштаб
» штативи, візирні цілі та екери
» способи нівелювання
» нівелірна рейка
» нівелювання траси
» Журнал технічного нівелювання
» юстировка нівеліра
» тахеометрична зйомка
» теодолітна зйомка
» Перевірки і юстировки теодолітів
» Проектні відмітки
» Генетика
I семестр:
» Фізика
» вопрос 8 (2)
» http://webkonspect.com/?lessonid=81316
» 2 вопрос
» 3 вопрос
» 3 вопрос (2)
» 5 вопрос
» 6 вопрос
» 7 вопрос
» 8 вопрос
» вопрос 9 (1)
» вопрос 9 (4)
» вопрос 10
» вопрос 10 (2)
» вопрос 11
» вопрос 12
» вопрос 13
» вопрос 14
» вопрос 15
» вопрос 16
» вопрос 19
» вопрос 20
» вопрос 21
» вопрос 23 (2)
» вопрос 23 (1)
» вопрос 24
» вопрос 25 (1)
» вопрос 25 (2)
» вопрос 26
» вопрос 27 (1)
» вопрос 27 (2)
» вопрос 28
» вопрос 29
» вопрос 29 (3)
» вопрос 32
» вопрос 34
» вопрос 34 (2)
» вопрос 34 (3)
» вопрос 34 (4)
» вопрос 35 (1)
» вопрос 35 (2)
» вопрос 36
» вопрос 37
» вопрос 38
» вопрос 38 (3)
» вопрос 39 (3)
» вопрос 40
» вопрос 41
» вопрос 42
» вопрос 42 (2)
» вопрос 43
» вопрос 44
» вопрос 45
» вопрос 46
» вопрос 47
» вопрос 48
» вопрос 49
» вопрос 50
» вопрос 50 (2)
» вопрос 51
» вопрос 52
» вопрос 54
» вопрос 55
» вопрос 56
» вопрос 56 (2)
» вопрос 57
» вопрос 23(3)
» вопрос 31
» вопрос 33
» вопрос 34 (5)
» вопрос 34 (6)
» вопрос 39 (1)
» вопрос 53
» вопрос 58

ln

Z \, " class="mwe-math-fallback-png-inline tex" src="http://upload.wikimedia.org/math/d/d/a/ddad9b24876468ec5669243c583e8f4b.png" style="border:none; display:inline; vertical-align:middle" />,

де T — абсолютна температура, Z — статистична сума. Оскільки через похідні від вільної енергії виражаються всі термодинамічні змінні, то статистична сума містить повну інформацію про термодинамічну систему.

На початку 20 століття була відкрита квантова механіка і побудована квантова статистична фізика. Загальні термодинамічні міркування для квантової статистики та класичної статистики залишаються однаковими, проте результати дуже суттєво змінюються. Особливо це стосується принципу нерозрізнюваності частинок. Завдяки цьому принципу всі квантові частинки діляться на два класи — ферміони і бозони, для яких характерні різні статистики — статистика Фермі-Дірака та статистика Бозе-Ейнштейна, відповідно. Застосування цих квантових статистик дозволило розширити область справедливості термодинаміки на фізичні системи при дуже низьких температурах, при дуже великих густинах, наприклад, у надрах зірок тощо.

Рівноважне випромінювання[ред. • ред. код]

Докладніше у статті Абсолютно чорне тіло

Розгляд термодинамічної системи, яка перебувала б у тепловій рівновазі із власним тепловим випромінюванням призвів до зародження квантової механіки. Кожне тіло при скінченній температурі випромінює електромагнітні хвилі. Спектр цього випромінювання залежить від температури тіла. Якщо уявити собі порожнисте тіло, то енергія випромінена в порожнину повинна урівноважуватися енергією, поглинутою стінками, інакше теплова рівновага не встановиться. Однак теоретичні розрахунки спектру такого випромінювання, що проводилися наприкінці 19-го століття не могли добитися такої рівноваги між випроміненою і поглинутою енергією. Водночас експериментальні вимірювання жодної проблеми не виявили: сперктр випромінювання мав максимум на певній залежній від температури частоті. Цей спектр удалося відтворити Максу Планку, припустивши, що електромагнітні хвилі випромінюються порціями, які мають енергію, пропорційну частоті. При такому припущенні теплова рівновага між тілом та його випромінюванням стала можливою.

Нерівноважна термодинаміка[ред. • ред. код]

В той час, як класична термодинаміка в основному зосереджена на вивченні рівноважних термодинамічних систем і рівноважних процесів, нерівноважна термодинаміка вивчає перехідні процеси, процеси встановлення рівноваги у початково нерівноважних системах. До таких процесів належать процеси дифузії (масопереносу),теплопереносу, проходження через речовину електричного струму і таке інше.

Процеси в нерівноважних системах описуються кінетичними рівняннями.

Лінійна нерівноважна термодинаміка[ред. • ред. код]

При невеликих відхиленнях стану термодинамічної системи від рівноважного потоки частинок, тепла чи електричного струму через речовину пропорційні градієнтамвідповідних термодинамічних змінних, значення яких у певний момент часу і в певній точці простору можна знаходити, використовуючи рівняння та термодинамічні потенціали рівноважної термодинаміки. Відповідний розділ нерівноважної термодинаміки називається лінійною нерівноважною термодинамікою.

Важливу роль у нерівноважній термодинаміці відіграють рівняння неперервності, які відображають закони збереження. Просцеси переходу фізичної системи від нерівноважного стану до рівноважного часто складні. Наприклад, при створенні градієнту температури в твердих тілах можуть виникнути не тільки теплові потоки, а й потоки електричних зарядів, чим пояснюються термоелектричні явищаПринцип Онсагера встановлює фундаментальну закономірність таких процесів, стверджуючи, що матриця кінетичних коефіцієнтів симетрична. Так, щодо наведеного прикладу термоелектричних явищ, ефект Зеебека — виникнення електрорушійної сили в нерівномірно нагрітому провіднику, є оберненим до ефекта Томсона — виділення тепла при проходженні струму.

Флуктуативно-дисипативна теорема відображає зв'язок між відкликом термодинамічної системи на зовнішнє збурення та процесами затухання флуктуацій, які можливі у цій системі.

Відкриті системи далекі від рівноваги[ред. • ред. код]

Другий закон термодинаміки, тобто закон неспадання ентропії, стверджує, що еволюція термодинамічних систем призводить до збільшення безпорядку в них. У результаті виникла ідея теплової смерті — встановлення повністю розупорядкованого рівноважного стану, коли всі перехідні процеси завершаться. Однак в природі ми часто спостерігаємо перемогу порядку над безпорядком, свідченням чого є, наприклад життя.

Закон неспадання ентропії несправедливий для відкритих термодинамічних систем у станах далеких від рівноваги. В таких системах можливий негативний притік ентропії, завдяки якому стають дозволеними процеси самоорганізації — виникнення складних впрорядкованих структур. Такі процеси вивчає синергетика.


11.06.2014; 19:28
хиты: 201
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь