пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

30. Карты барической и относительной топографии.

Карта барической топографии- высотная карта, синоптическая, средняя или климатологическая, на которую нанесены высоты (точнее – геопотенциалы) той или иной изобарической поверхности над уровнем моря (карта абсолютной барической топографии) или над уровнем нижележащей изобарической поверхности (карта относительной барической топографии). На карте проводятся изогипсы – линии равного геопотенциала. На карту барической топографии наносятся иногда и некоторые другие элементы: температура и ветер на данной изобарической поверхности, термический ветер для слоя между двумя изобарическими поверхностями (на картах относительной топографии). Карты барической топографии составляются для главных изобарических поверхностей 1000, 850, 700, 500, 300, 200, 100, 50, 25, 10 мб. Карты барической топографии в совокупности характеризуют пространственное распределение давления и температуры в атмосфере.

Обозначения: АТ700 – карта абсолютной барической топографии поверхности 700 мб; ОТ 500/1000 – карта относительной топографии поверхности 500 мб над поверхностью 1000 мб и т.д.

Карты барической топографии

Пространственное распределение атмосферного давления непрерывно меняется с течением времени. Это значит, что не­прерывно меняется расположение изобарических поверхностей в атмосфере. Чтобы следить за изменениями барического, а также и термического поля, в практике службы погоды еже­дневно составляют по аэрологическим наблюдениям карты топо­графии изобарических поверхностей — карты барической топо­графии.

На карту абсолютной барической топографии наносят вы­соты определенной изобарической поверхности над уровнем моря на разных станциях в определенный момент времени, на­пример поверхности 500 мб в 6 часов утра 1 января 1967 г. Точки с равными высотами соединяют линиями равных высот — изогипсами (абсолютными изогипсами). По изогипсам можно судить о распределении давления в тех слоях атмосферы, в ко­торых располагается данная изобарическая поверхность.

В атмосфере всегда существуют области, в которых давле­ние повышено или понижено по сравнению с окружающими об­ластями. Фактически вся атмосфера состоит из таких областей повышенного или пониженного давления, расположение которых все время меняется. При этом в областях пониженного давле­ния — циклонах или депрессиях — давление на каждом уровне самое низкое в центре области, а к периферии растет. Давление, кроме того, всегда понижается с высотой; поэтому изобари­ческие поверхности в циклоне прогнуты в виде воронок, сни­жаясь от периферии к центру (рис. 1). Следовательно, на карте абсолютной топографии в центре циклона будут находиться изогипсы с меньшими значениями высоты, а на периферии — изогипсы с большими значениями (рис. 2). В области повы­шенного давления — антициклоне, напротив, на каждом уровне в центре будет наивысшее давление; поэтому изобарические поверхности в антициклоне будут иметь форму куполов, и на карте абсолютной барической топографии в центре антициклона мы найдем изогипсы с наивысшими значениями (см. те же рисунки).

Рис.1.  Изобарические поверхности в циклоне   (H) и в антициклоне (В) в вертикальном разрезе.

Составляют еще карты относительной барической топо­графии. На такую карту наносят высоты определенной изоба­рической поверхности, но отсчитанные не от уровня моря (как на картах абсолютной барической топографии), а от другой, ле­жащей ниже изобарической поверхности. Например, можно со ставить карту высот поверхности 500 мб над поверхностью 1000 мб и т. д.

Такие высоты называются относительными, а проведенные по ним изогипсы — относительными изогипсами. Относительная высота одной изобарической поверхности над другой зависит от средней температуры воздуха между этими двумя поверхностями (рис. 3). Из главы второй известно, что барическая ступень зависит от температуры. Но барическая сту­пень, т. е. расстояние между двумя уровнями с давлением, различающимся на единицу, в сущности и есть относительная вы­сота одной изобарической поверхности над другой.

Рис. 2. Циклон (H) и антициклон (В) на карте абсолют­ной топографии изобарической поверхности 500 мб.

Цифры — высоты в десятках метров. В циклоне изобарическая поверхность лежит ближе к уровню моря, чем в антициклоне.

Рис. 3. Изобарические поверхности в областях тепла (T) и холода (X) в вертикальном разрезе. В  области тепла  они раздвинуты,  в области  холода — сближены

 

Отсюда сле­дует, что по распределению на карте относительных высот можно судить о распределении средних температур в слое воз­духа между взятыми двумя изобарическими поверхностями.

Рис. 4. Области тепла  (T) и холода  (X) на карте относительной  топографии    изобарической поверх­ности 500 мб над поверхностью 1000 мб.

В областях тепла толщина атмосферного слоя между двумя поверхностями  увеличена, в областях холода — уменьшена.

 

Чем больше относительная высота, тем выше температура слоя. Следовательно, карты относительной топографии показывают рас­пределение температуры в атмосфере (рис. 4). Иногда го­ворят, что карты абсолютной и относительной топографии вместе представляют термобарическое поле атмосферы.

В службе погоды карты абсолютной топографии обычно со­ставляются для изобарических поверхностей 1000, 850, 700, 500, 300, 200, 100, 50, 25 мб, а карты относительной топографии — для поверхности 500 над 1000 мб. Составляют карты барической топографии и по осредненным данным за промежутки времени от нескольких дней до месяца. Для климатологических целей применяются карты барической топографии, составленные по многолетним средним данным.

На карты барической топографии, строго говоря, наносят не высоты изобарических поверхностей, а их геопотенциалы. Геопотенциалом (абсолютным) называется потенциальная энер­гия единицы массы в поле силы тяжести. Иначе говоря, геопо­тенциал изобарической поверхности в каждой ее точке есть работа, которую нужно затратить против силы тяжести, чтобы поднять единицу массы от уровня моря в данную точку. По определению геопотенциал в каждой точке атмосферы равен Ф = gz, где — высота   точки над уровнем моря, а g — ускорение силы тяжести. Итак, в любой точке изо­барической поверхности под данной широтой при данном зна­чении силы тяжести имеется определенный геопотенциал, про­порциональный высоте этой точки над уровнем моря. Поэтому применение геопотенциала вместо высоты вполне возможно и имеет определенные теоретические и технические преимущества. При этом геопотенциал выражают в таких единицах (геопотен­циальных метрах), при которых он численно близок к высоте, выраженной в метрах (и в точности равен ей на уровне моря под широтой 45°). В связи с этим геопотенциал называют еще динамической или геопотенциальной высотой.

Относительный геопотенциал соответственно равен разности абсолютных геопотенциалов двух точек, лежащих на одной вер­тикали.


20.01.2015; 22:17
хиты: 157
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь