пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Система комплимента. Характеристика протеолитических систем. Ограниченный протеолиз. Усиление сигнала.

Система комплемента  является частью иммунной системы, она осуществляет неспецифическую защиту от бактерий и других проникающих в организм  возбудителей болезней. Система комплемента  состоит примерно из 20 различных белков  — «факторов (компонентов) комплемента », которые находятся в плазме крови  и составляют около 4% от всех белков плазмы .

А. Активация комплемента

Система комплемента  может действовать тремя различными способами:

через хемотаксис: различные компоненты (факторы) комплемента  могут привлекать иммунные клетки , которые атакуют бактерии и пожирают их (фагоцитируют);

через лизис : компоненты комплемента  присоединяются к бактериальным мембранам , в результате чего образуется отверстие в мембране  и бактерия лизируется;

через опсонизацию: компоненты комплемента  присоединяются к бактерии, в результате чего образуется метка для узнавания фагоцитирующими клетками  (например, макрофагами и лейкоцитами ). имеющими рецепторы  к компонентам комплемента .

Реакции  системы комплемента  осуществляются, как правило, молекулами  на поверхности микроорганизма .Факторы (компоненты) с С1 по С9 (С от англ. complement) формируют так называемый «классический путь»  активации комплементафакторы В и D участвуют в активации «альтернативного пути» . Другие компоненты системы  комплемента , здесь не показанные, выполняют регуляторные функции.

Ранние компоненты системы  комплемента  являются сериновыми протеиназами. Они создают амплифицирующий ферментативный каскад реакций . Классический путь инициируется связыванием компонента C1 с несколькими молекулами  IgG или с пентамерным IgM на поверхности микроорганизма. Альтернативный путь инициируется связыванием фактора В, например, с бактериальным липополисахаридом (эндотоксином ). Оба пути ведут к расщеплению компонента С3 комплемента  на два фрагмента, обладающих различными функциями. Меньший фрагмент С3а принимает участие в развитии воспалительного процесса, индуцируя хемотаксис лейкоцитов  к очагу воспаления (хемотаксис, воспалительные процессы). Более крупный фрагмент С3b связывается ковалентно на поверхности бактериальной клетки  и инициирует цепь реакций , приводящих к образованию мембраноатакующего комплекса (см. ниже) поздними компонентами системыкомплемента .

Компонент C1 комплемента  представляет собой сложный молекулярный комплекс , состоящий из трех различных компонентов C1q, C1r и C1s . Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с Fс-фрагментом антител . При связывании нескольких C1q с антителами  активируется серин-протеиназа C1r, с которой начинается протеолитический каскад классического пути.

Компонент СЗ комплемента  стоит в центре активации системы. СЗ подвергается протеолизу  СЗ-конвертазой с расщеплением на СЗа и СЗb фрагменты и участвует в формировании С5-конвертазы. СЗ-конвертаза представляет собой комплекс из C4b и С2а (в случае классического пути) или из СЗb и Bb (в случае альтернативного пути). Пригидролизе  СЗ в СЗb становится доступной очень реакционноспособная тиолслож-ноэфирная группа, которая реагирует с гидроксильной или аминогруппой . Вследствие этого СЗb ковалентно связывается с молекулами бактериальной мембраны  (опсонизация).

Система комплемента - это сложный комплекс сывороточных глобулинов. Это каскадная система протеолитических ферментов предназначена для гуморальной защиты организма от действия чужеродных агентов и участвует в реализации иммунного ответа организма. Белки системы комплемента обеспечивают быстрый и эффективный ответ на на первично слабый сигнал и доведение его до функциональных последствий. Компоненты системы комплемента принято обозначать латинскими буквами.
Существуют два механизма активации системы комплемента:
1) классический;
2) альтернативный.
Эти механизмы соединяются на уровне 5-го компонента и затем протекают одинаково.
 Классический путь Был открыт первый. Пусковым механизмом является образование комплекса "антиген-антитело" (АГ-АТ) на поверхности клетки-мишени. Имунный комплекс связан с С1q и каждая из 3х субъединиц имеет 2 центра связывания для этих комплексов. При этом в молекуле иммуноглобулина (он обозначается: Ig или АТ) происходят конформационные изменения. В результате этих изменений Ig приобретает способность связывать С1q-компонент комплемента. К ним присоединяются C1r и C1s, и уже весь этот комплекс подвергается конформационной перестройке и превращается в С1-эстеразу, которая действует на С4, отщепляется С4а, а С4b входит в состав комплекса. Затем к комплексу присоединяется С2, формируя новый субстрат для действия С1s, отщепляется С2b, а С2a входит в состав комплекса.
Образовавшийся комплекс называется "С3-конвертаза", и под его действием отщепляется пептид С3a, а С3b входит в состав комплекса, который теперь называется "С5-конвертаза". С5-конвертаза действует на С5, отщепляет от него С5а, а С5b входит в состав комплекса.
После этого с С5b последовательно связываются С6, С7 и С8. В результате образуется комплекс, способный присоединять 2 молекулы С9.
Если этот процесс протекает на поверхности клетки-мишени, то компоненты комплекса С5b-C9 образуют мембраноатакующий комплекс, который формирует на поверхности клетки-мишени трансмембранные каналы, полностью проницаемые для электролитов и воды. Клетка-мишень погибает.
Побочные (неосновные) продукты процесса С3а и С5а обладают свойствами анафилотоксинов.
Регуляция классического пути
Большинство компонентов активны только в составе комплекса. Их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то компонента ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям.
В регуляции работы системы комплемента также принимают участие эндогенные ингибиторы протеиназ. Самым эффективным из них является С1-ингибитор.

Система комплемента

Что делает

С1q

С1 белок связан с комплексом антиген – антитело.

C4b

C3b

Отвечают за функцию активации других компонентовсистемы путём расщепления

C1r

C1s

C2b

Bb

D

Медиаторы воспаления-это белки, которые вызывают D грануляцию

C3a

C5a

C4a

C5b

C6

C7

C9

C8

 

Комплекс атаки на мембрану


 Альтернативный путь Отличие альтернативного пути от классического заключается в том, что для его запуска не нужно образования иммунных комплексов.
Пусковым механизмом альтернативного пути является образование С3b из С3 под действием какого-либо пускового фактора: например, полисахаридов бактериальной клеточной стенки.
С3b образует комплекс с фактором "В" (С3bB), который подвергается действию протеазы D (всегда активна в плазме крови!). В результате отщепляется "Ва" и образуется комплекс С3bBb, который обладает протеолитической активностью в отношении С5 - отщепляет от него С5а.
После этого реакции протекают так же, как и в классическом пути.
Субстратом для С3b является и С3, в результате чего образуется еще большее количество С3b - наблюдается положительная обратная связь. Поэтому достаточно даже небольших количеств С3bBb, чтобы получать все больше и больше его активной формы (усиление первично слабого сигнала).
Альтернативный путь в норме работает всегда и очень активно, что обеспечивает быстрый неспецифический ответ на внедрение чужеродных клеток.
В регуляции работы системы комплемента принимают участие специфические ингибиторы, которые регулируют скорость работы ферментов ключевых реакций.

Оба пути действую параллельно.

Плазма крови содержит несколько протеолитических систем. В составе этих систем - протеиназы, участвующие в защитных и регуляторных реакциях организма. В отличие от тканевых, плазменные протеиназы пространственно не разделены. Поэтому они могут свободно взаимодействовать между собой.

К основным протеолитическим системам крови относятся, кининовая и ренин-ангиотензиновая.

  1. Система свертывания крови и фибринолиза. 
  2. Система комплемента, как одна из составных частей иммунной защиты организма. 
  3. Кининовая система. 
  4. Ренин-ангиотензиновая система. 


 Эти системы обеспечивают различные функции, но в работе их соблюдются ОБЩИЕ ПРИНЦИПЫ:

1. Это - многокомпонентные мультиферментные системы, в которых продукт предыдущей реакции служит ферментом для следующей реакции.

2. Большинство компонентов этих систем является протеолитическими ферментами. Они в виде проферментов циркулируют в крови и активируются только в определенных условиях.

3. Эти системы обладают свойством усиливать первично слабый сигнал. Они работают по принципу каскадности, то есть их работа приводит к быстрому нарастающему увеличению количества активных форм ферментов.

4. Системы саморегулируются по принципу положительной и отрицательной обратной связи.

 

  Протеолиз (проте [ины] + lysis разложение, распад) — ферментативный гидролиз белков и пептидов, катализируется протеолитическими ферментами (пептид-гидролазами, протеазами) и играет важную роль в регуляции обмена веществ в организме. С протеолизом связаны такие фундаментальные процессы жизнедеятельности, как внутриклеточный распад белков и регуляция их кругооборота пищеварение, оплодотворение, морфогенез, защитные реакции адаптационные перестройки обмена. Нарушение протеолиза и его регуляции лежит в основе развития многих патологических состояний.

    Различают два типа протеолиза: приводящий к полному расщеплению белковых молекул до отдельных аминокислот и частичный, так называемый ограниченный протеолиз, при котором избирательно гидролизуется одна или несколько пептидных связей в молекуле белка. Протеолиз первого типа происходит в результате согласованного действия различных протеолитических ферментов, тогда как реакции ограниченного П. катализируются отдельными специфическими протезами. Полный протеолиз осуществляется при внутриклеточном распаде белков под влиянием тканевых протеаз (часто называемых катепсинами). Он протекает во многих случаях внутри лизосом — клеточных органелл, содержащих набор гидролитических ферментов. Путем полного П. происходит удаление из организма аномальных белков, образующихся в результате мутаций и ошибок биосинтеза. Полное расщепление белковых молекул наблюдается также при различных морфогенетических превращениях и адаптационных перестройках обмена. В процессах пищеварения под влиянием протеолитических ферментов желудочно-кишечного тракта пепсинатрипсинахимотрипсина и ряда пептидаз происходит полный протеолиз белков пищи.

    Ограниченный П. белковых молекул имеет первостепенное значение для регуляции обмена веществ в организме. Реакции ограниченного протеолиза участвуют в процессе образования и инактивации практически всех ферментов, гормонов и других биологически активных белков и пептидов и, следовательно, в контроле активности основных биорегуляторов. Например, ограниченный П. происходит при превращении неактивных проферментов пепсиногена, трипсиногена и др. в соответствующие активные протеазы, а также при образовании ферментов, участвующих в свертывании крови, фибринолизе, активации системы комплемента, ренин-ангиотензинной и калликреин-кининовой систем и др. Эти системы организма активируются в результате каскадного процесса, на каждой из стадий которого из неактивного профермента путем ограниченного протеолиза образуется фермент, катализирующий последующую реакцию. Примером роли ограниченного П. в биогенезе гормонов может служить специфический гидролиз ряда пептидных связей в молекуле проопиомеланокортина, в результате которого из этого полифункционального биосинтетического предшественника образуются АКТГ, b-липотропин, эндорфины, меланоцитостимулирующие гормоны, из проинсулина — инсулин, из проглюкагона — глюкагон. Таким же образом из своих неактивных предшественников образуются факторы роста и другие регуляторные пептиды. При некоторых эндокринных заболеваниях, например наследственной проинсулинемии, нарушен ограниченныйпротеолиз проинсулина. Основным молекулярным механизмом образования, инактивации и модификации различных нейропептидов также является ограниченный П. , который тем самым играет существенную роль в реализации таких нейрофизиологических процессов, как память, боль, поведенческие реакции и др.

    Ограниченный протеолиз представляет собой один из основных механизмов посттрансляционной модификации — процессинга белков, этапа, на котором из вновь синтезированных полипептидных цепей формируются «зрелые» белковые молекулы. С помощью ограниченного П. образуются функционально активные белки и пептиды не только у высших, но и у простейших организмов. Так, путем ограниченного протеолиза из вирусного полипротеина получаются специфические белки различных вирусов, т.е. ограниченныйП. является одним из важнейших механизмов репродукции вирусов и играет большую роль в развитии вирусных инфекций.

    В организме различные белки имеют разную продолжительность жизни: для одних белков она составляет минуты, для других — многие сутки. Продолжительность жизни белков и скорость их кругооборота определяются как скоростью их биосинтеза, так и скоростью протеолиза. Скорость протеолиза белков зависит от ряда факторов, в частности от их взаимодействия с другими веществами: субстратами, коферментами, аллостерическими эффекторами, а также от химических модификаций, которым белок может подвергаться в клетке (гликозилирования, фосфорилирования и др.).

    При переходе организма из одного физиологического состояния в другое (например, на определенных стадиях эмбриогенеза), а также при голодании и некоторых стрессорных реакциях наблюдается резкое усиление П. тканевых белков.

Локальное усиление протеолиза белков межклеточного матрикса (коллагена, фибронектина, ламинина, протеогликанов и др.) отмечается, например, в процессе разрушения хряща при ревматоидном артрите, базальной мембраны при гломерулонефрите, а также при инвазивном росте и метастазировании опухолей. Повышенный П. этих белков, а также эластина наблюдается в случае разрушения легочной ткани при эмфиземе легкого, туберкулезе легких и др. Рассеянный склероз и ряд других заболеваний нервной системы, сопровождающихся демиелинизацией, связаны с усилением протеолиза основного белка миелина. При мышечной дистрофии отмечают повышенный протеолиз белков миофибрилл. Во всех этих случаях усиленный распад белков обусловлен освобождением внутриклеточных протеаз и нарушением регуляции их активности.

    Изменение протеолиза белков при ряде других заболеваний может быть вызвано синтезом дефектного белка-субстрата. Это наблюдается при некоторых наследственных энзимопатиях, когда недостаточность фермента может быть о словлена синтезом белка-субстрата, обладающего повышенной чувствительностью к действию протеаз (например, b-галактозидазы при некоторых формах галактосиалидоза), или нарушением ограниченного протеолиза биосинтетического предшественника ферментного белка и образованием вследствие этого аномальной формы фермента (например, аномальный a-субъединицы гексозаминидазы А при некоторых вариантах болезни Тея — Сакса).

    Катализирующие гидролиз белков пептидгидролазы (протеазы, пептидазы) представляют собой большую группу ферментов, различающихся по своим физико-химическим свойствам, структуре и субстратной специфичности. Эти ферменты имеют универсальное распространение и локализованы в различных субклеточных структурах: ядрах, лизосомах, митохондриях, пластинчатом комплексе, микросомной и плазматической мембранах, цитозоле и др. Различают две большие группы протеаз: эндопептидазы, расщепляющие в белках внутренние и пептидные связи, и экзопептидазы, которые гидрализуют связи на N- и С-концевых участках пептидной цепи. По строению активного центра фермента и механизму его действия выделяют 4 семейства эндопептидаз: аспартильные, серниновые, цистеиновые и металлопротеазы, к аспартильным протеазам относятся пепсин, ренин, катепсины D, Е и ряд других; к сериновым ферментам принадлежат трипсин, химотрипсин, эластаза, подавляющее большинство протеаз плазмы крови (факторы свертывания крови, фибринолиза, системы комплемента, кининовой системы), многие внутриклеточные и бактериальные протеазы. К цистеиновым протеазам относятся многие катепсины: В, H, L, ряд бактериальных и растительных ферментов, из которых наиболее хорошо изучен папаин. Представителями металлопротеаз являются коллагеназа, термолизин и др. Экзопептид разделяют на аминопептидазы и карбоксипептидазы, дипептидиламинопептидазы и дипептидилкарбоксипептидазы, которые катализируют отщепление аминокислотили дипептидов от N- и С-конца пептидной цепи соответственно, и дипептидазы, катализирующие гидролиз дипептидов. Многие экзопептидазы являются металлоферментами.

    Большинство протеаз синтезируется в виде неактивных предшественников — проферментов; их активация происходит в результате ограниченного протеолиза , протекающего либо аутокаталитически, либо под действием определенных протеаз. Многие протеазы подвергаются аутолизу (самоперевариванию), при этом часто теряют ферментативную активность. В некоторых случаях (например, у Са2+-зависимых нейтральных протеаз) на определенных этапах аутолиза отмечают активацию ферментов. В плазме крови и других биологических жидкостях также в различных клетках и тканях присутствуют белковые ингибиторы, специфически блокирующие активность отдельных протеаз или групп протеаз. С помощью систем таких ингибиторов осуществляются регуляция активности протеаз в физиологических условиях и предохранение белков от их действия. Нарушение баланса между протеазами и соответствующими ингибиторами часто приводит к развитию патологии.

    Для коррекции протеолиза в клинической практике в качестве лекарственных средств используют протеолитические ферменты и их ингибиторы. Так, для нормализациипротеолиза пищевых белков при некоторых желудочно-кишечных заболеваниях применяют препараты пепсина, трипсина, химотрипсина для лизиса сгустков фибрина при тромболитической терапии используют плазмин (фибринолизин), стрептокиназу и др.; при лечении гнойных ран, ожогов, пролежней для П. белков некротизированных тканей применяют трипсин, химотрипсин и некоторые другие протеазы. При заболеваниях, сопровождающихся усиленным протеолизом белков (например, при панкреатитах) используютпрепараты ингибиторов протеаз: трасилол и др.).

 

8.


03.06.2014; 22:15
хиты: 380
рейтинг:0
Естественные науки
науки о жизни
биохимия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь