пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

V семестр:
» Микробиология
IV семестр:
» Физиология
I семестр:
» Гиста
» анатомия

37 Билет

1 вопрос
Определение гормонов,их образование и секреция. Действие на клетки и ткани. Классификация гормонов  по разным признакам.
Гормоны-Специфические регуляторы, которые секретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки-мишени. Секреция гормонов – процесс освобождения гормонов из эндокринных клеток в межклеточные щели с дальнейшим их поступлением в кровь, лимфу. Секреция гормона строго специфична для каждой эндокринной железы. Секреторный процесс осуществляется как в покое, так и в условиях стимуляции. Секреция гормона происходит импульсивно, отдельными дискретными порциями. Импульсивный характер гормональной секреции объясняется циклическим характером процессов биосинтеза, депонирования и транспорта гормона. Секреция и биосинтез гормонов тесно взаимосвязаны друг с другом. Эта связь зависит от химической природы гормона и особенностей механизма секреции. Выделяют три механизма секреции:1) освобождение из клеточных секреторных гранул (секреция катехоламинов и белково-пептидных гормонов);2) освобождение из белоксвязанной формы (секреция тропных гормонов);3) относительно свободная диффузия через клеточные мембраны (секреция стероидов).Степень связи синтеза и секреции гормонов возрастает от первого типа к третьему. Гормоны, поступая в кровь, транспортируются к органам и тканям. Связанный с белками плазмы и форменными элементами гормон аккумулируется в кровяном русле, временно выключается из круга биологического действия и метаболических превращений. Неактивный гормон легко активируется и получает доступ к клеткам и тканям. Параллельно идут два процесса: реализация гормонального эффекта и метаболическая инактивация. В процессе обмена гормоны изменяются функционально и структурно. Подавляющая часть гормонов метаболизируется, и лишь незначительная их часть (0,5—10 %) выводятся в неизмененном виде. Метаболическая инактивация наиболее интенсивно протекает в печени, тонком кишечнике и почках. Продукты гормонального метаболизма активно выводятся с мочой и желчью, желчные компоненты окончательно выводятся каловыми массами через кишечник. Небольшая часть гормональных метаболитов выводится с потом и слюной.
Влияние гормонов и нейромедиаторов на клетку осуществляется обычно по одному из трех путей: а) изменение распределения веществ в клетке; б) химическая модификация клеточных белков; в) индукция или репрессия процессов белкового синтеза. Одним из основных механизмов, лежащих в основе гормонального влияния на распределение) веществ в клетке, является изменение ионной проницаемости клеточных мембран. Ионные каналы, работа которых регулируется нейромедиаторами, представляют собой олигомерные белковые комплексы, пронизывающие клеточную мембрану. Свойства этих олигомерных образований таковы - молекула нейромедиатора, связываясь со специфическим участком на ионном канале, вызывает открывание или закрывание канала. Регуляторное влияние белково-пептидных гормонов, простагландинов, катехоламинов и др. опосредовано через систему вторичных посредников. В качестве последних могут выступать циклический АМФ (цАМФ), циклический ГМФ (цГМФ), инозитол-1,4,5-трифосфат, диацилглицерин или ионы Са2+. Диацилглицерин и инозитол-1,4,5-трифосфат образуются при активации фосфолипазы С, гидролизующейфосфоинозитиды. Образование этих посредников приводит к выходу ионов Са2+ из эндоплазматической сети и стимуляции протеинкиназы С.
Классификация:По химической природе гормоны разделены на три группы:1) стероиды;2) полипептиды и белки с наличием углеводного компонента и без него;3) аминокислоты и их производные.
Функциональная классификация гормонов: 1Эффекторные гормоны - гормоны, которые оказывают влияние непосредственно на орган-мишень. 2Тройные гормоны - гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом. 3Рилизинг-гормоны - гормоны, регулирующие синтез и выделение гормонов аденогипофиза, преимущественно тройных. Выделяются нервными клетками гипоталамуса.

2 вопрос
Потенциал действия кардиомицетов
В состоянии покоя внутренняя поверхность мембран кардиомиоцитов заряжена отрицательно. Потенциал покоя определяется в основном трансмембранным градиентом концентрации ионов К+ и у большинства кардиомиоцитов (кроме синусового узла и АВ-узла ) составляет от минус 80 до минус 90 мВ. При возбуждении в кардиомиоциты входят катионы, и возникает их временная деполяризация - потенциал действия.

Ионные механизмы потенциала действия в рабочих кардиомиоцитах и в клетках синусового узла и АВ-узла разные, поэтому и форма потенциала действия также различается ( рис. 230.1 ).

У потенциала действия кардиомиоцитов системы Гиса-Пуркинье и рабочего миокарда желудочков выделяют пять фаз ( рис. 230.2 ). Фаза быстрой деполяризации (фаза 0) обусловлена входом ионов Na+ по так называемым быстрым натриевым каналам . Затем, после кратковременной фазы ранней быстрой реполяризации (фаза 1), наступает фаза медленной деполяризации, или плато (фаза 2). Она обусловлена одновременным входом ионов Са2+ по медленным кальциевым каналам и выходом ионов К+. Фаза поздней быстрой реполяризации (фаза 3) обусловлена преобладающим выходом ионов К+. Наконец, фаза 4 - это потенциал покоя .

Брадиаритмии могут быть обусловлены либо снижением частоты возникновения потенциалов действия, либо нарушением их проведения.

Способность некоторых клеток сердца к самопроизвольному образованию потенциалов действия называется автоматизмом . Этой способностью обладают клетки синусового узла , проводящей системы предсердий , АВ-узла и системы Гиса-Пуркинье . Автоматизм обусловлен тем, что после окончания потенциала действия (то есть в фазу 4) вместо потенциала покоя наблюдается так называемая спонтанная (медленная) диастолическая деполяризация. Ее причина - вход ионов Na+ и Са2+. Когда в результате спонтанной диастолической деполяризации мембранный потенциал достигает порога, возникает потенциал действия.

Проводимость , то есть скорость и надежность проведения возбуждения, зависит, в частности, от характеристик самого потенциала действия: чем ниже его крутизна и амплитуда (в фазу 0), тем ниже скорость и надежность проведения.

При многих заболеваниях и под действием ряда лекарственных средств скорость деполяризации в фазу 0 уменьшается. Кроме того, проводимость зависит и от пассивных свойств мембран кардиомиоцитов (внутриклеточного и межклеточного сопротивления). Так, скорость проведения возбуждения в продольном направлении (то есть вдоль волокон миокарда) выше, чем в поперечном (анизотропное проведение).

Во время потенциала действия возбудимость кардиомиоцитов резко снижена - вплоть до полной невозбудимости. Это свойство называется рефрактерностью . В период абсолютной рефрактерности никакой раздражитель не способен возбудить клетку. В период относительной рефрактерности возбуждение возникает, но только в ответ на надпороговые раздражители; скорость проведения возбуждения снижена. Период относительной рефрактерности продолжается вплоть до полного восстановления возбудимости. Выделяют также эффективный рефрактерный период, при котором возбуждение может возникнуть, но не проводится за пределы клетки.

В кардиомиоцитах системы Гиса-Пуркинье и желудочков возбудимость восстанавливается одновременно с окончанием потенциала действия. Напротив, в АВ-узле возбудимость восстанавливается со значительной задержкой.

3 вопрос 

Высшие функции обеспечиваются деятельностью особого отдела больших полушарий – коры головного мозга, которая несет главную ответственность за формирование условно-рефлекторных реакций. У человека по сравнению с животными кора одновременно ответственна и за согласование работы внутренних органов. Такое возрастание роли коры в регуляции всех функций в организме называется кортикализацией функций.
Кора выполняет следующие функции:
1 – взаимодействие организма с внешней средой за счет безусловных и условных рефлексов.
2 – осуществление высшей нервной деятельности (поведения) организма.
3 – выполнение высших психических функций (мышления и сознания).
4 – регуляция работы внутренних органов и обмена веществ в организме.Любая функциональная зона коры находится в анатомической и функциональной связи с другими зонами коры, с подкорковыми ядрами, структурами промежуточного мозга и ретикулярной формации, что обеспечивает совершенство выполняемых ими функций.
Лимбическая система – наиболее древняя часть коры, включающая в себя ряд образований коркового и подкоркового уровня (лобные доли мозга, поясная извилина, мозолистое тело, серый покров, свод, гиппокамп, миндалина и сосцевидные тела, таламус, стриопаллидарная система, ретикулярная формация). Основные ее функции:
1 – регуляция вегетативных процессов (особенно пищеварения),
2 – регуляция поведенческих реакций,
3 – формирование и регуляция эмоций, сна,
4 – формирование и проявление памяти.
Нужно помнить, что всевозможные раздражения экстеро – и интеро рецепторов могут изменить течение кортикальных процессов, в резуль тате чего нарушатся обычные взаимоотношения коры мозга и подкорки, что, в свою очередь, поведет к нарушениям работы внутренних органов, но это не значит, что данные нарушения относятся к кортико висцеральной патологии. Кортико-висцеральная патология предусматривает возникновение заболеваний внутренних органов при наличии невротического состояния коры головного мозга, со всеми характерными для него чертами и ocot бенностями. В этом и состоит разграничительная линия между забо-» леваниями, относящимися к кортико-висцеральной патологии, и всеми другими заболеваниями, самыми различными по своей этиологии (инфекция, травма, радиация и др.), но сопровождающимися нарушениями функций коры головного мозга. Здесь же следует оговорить, что последние при известных условиях могут затем переходить или в какой-то мере содействовать, предрасполагать переходу в кортико-висцеральное заболевание.
 


25.08.2014; 11:22
хиты: 171
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь