пользователей: 21251
предметов: 10459
вопросов: 177801
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ


3. Работа электростатических сил. Теорема о циркуляции вектора напряженности.

Существуют два равнозначных определения консервативной силы. Оба они подробно обсуждались в механике.

  1. Консервативной называется сила, работа которой не зависит от формы траектории.

  2. Консервативной называется сила, работа которой на замкнутой траектории равна нулю.

Рассмотрим перемещение заряда q в электростатическом поле img0139 по замкнутой траектории (рис. 3.5.). Заряд из точки 1 перемещается по пути L1 в точку 2, а затем возвращается в исходное положение по другому пути L2. В процессе этого движения на заряд со стороны поля действует консервативная электрическая сила:

img0140.

Работа этой силы на замкнутой траектории L = L1 + L2 равна нулю:

img0141.

Это уравнение, упростив, запишем так:

                         img0142.                       (3.18)

 

Рис. 3.5.

Разберём подробно последнее уравнение. Подынтегральное выражение — элементарная работа электрической силы, действующей на единичный положительный заряд, на перемещении img0143 (рис. 3.6.):

                    img0144,                  (3.19)

здесь q = 1 — единичный заряд.

 

Рис. 3.6.

При подсчёте работы на замкнутой траектории необходимо сложить элементарные работы электрической силы на всех участках траектории. Иными словами, проинтегрировать (3.19) по замкнутому контуру L:

          img0145.             (3.20)

Интеграл по замкнутому контуру img0146 = img0147 называется циркуляцией вектора напряжённости электростатического поля по контуру L. По своей сути циркуляция вектора напряжённости — это работа электростатического поля, совершаемая при перемещении по замкнутому контуру единичного положительного заряда.

Так как речь идёт о работе консервативной силы, то на замкнутой траектории она равна нулю:

img0148.

Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.

 

Работа перемещения заряда. На положительный точечный заряд q в электрическом поле с напряжённостью E действует сила 
q E. При перемещении заряда на отрезке dl силами поля совершается работа

dA = d= q E dcos (E, dl).

При перемещении заряда q силами электрического поля на произвольном конечном отрезке из точки 1 в точку 2 эта работа равна

image002.jpg .

Рассмотрим перемещение точечного заряда q в поле точечного заряда Q, напряженность поля которого 

image0022.jpg .

Проекция отрезка dl на направление вектора E (рис. 1.5) есть dr = dl cos (E, dl).

Работа, совершаемая электрическим полем при перемещении заряда q из точки 1 в точку 2, определяется следующим образом:

image006.jpg

image006.gif

Отсюда следует, что работа сил электрического поля не зависит от формы пути, а определяется только начальным и конечным положениями заряда q. Если оба заряда, q и Q, положительны, то работа сил поля положительна при удалении зарядов и отрицательна при их взаимном сближении.

Для электрического поля, созданного системой зарядов Q1, Q2,¼, Qn, работа перемещения заряда q равна алгебраической сумме работ составляющих сил:

image008.jpg .

Таким же образом, как и каждая из составляющих работ, суммарная работа зависит только от начального и конечного положений заряда q.

Циркуляция вектора напряженности электрического поля. Работа, совершаемая силами электрического поля при перемещении единичногоположительного заряда по замкнутому контуру длиной l, определяется как циркуляция вектора напряженности электрического поля:

image010.jpg

Так как для замкнутого пути положения начальной и конечной точек перемещения заряда совпадают, то работа сил электрического поля на замкнутом пути равна нулю, а значит, равна нулю и циркуляция вектора напряженности, т.е.

image00222.jpg .

Равенство нулю означает, что силы электрического поля являются силамиконсервативными, а само поле - потенциальным.


15.06.2014; 19:52
хиты: 757
рейтинг:0
Естественные науки
физика
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь