пользователей: 21231
предметов: 10456
вопросов: 177504
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

I семестр:
» Химия
» Физика

40. Комплексные соединения. Геометрическое строение комплексных ионов. Электролитическая диссоциация и константы нестойкости комплексных ионов.

Комплексные соединения
Комплексные соединения содержат катионный, анионный или нейтральный комплекс, состоящий из центр. атома (или иона) и связанных с ним молекул или ионов - лигандов. Центр. атом (комплексообразователь) - обычно акцептор, а лиганды - доноры электронов, и при образовании комплекса между ними возникает донорно-акцепторная, или координационная, связь.
 
Внутренняя сфера комплексного соединения — центральный атом со связанными с ним лигандами, то есть, собственно, комплексная частица.
 
Внешняя сфера комплексного соединения — остальные частицы, связанные с комплексной частицей ионной или межмолекулярными связями, включая водородные.
 
Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса. Ее обычно заключают в квадратные скобки. Все остальное в комплексном соединении составляет внешнюю сферу и пишется за квадратными скобками.
 
ЛИГАНДЫ (от лат. ligo - связываю), нейтральные молекулы, ионы или радикалы, связанные с центр. атомом комплексного соединения. Ими м. б. ионы (Н-, Наl-, NO3-, NCS- и др.), неорг. молекулы (Н2, Сn, N2, Рn, О2, Sn, СО, СО2, NH3, NO, SO2, NO2, COS и др.), орг. соед., содержащие элементы главных подгрупп V, VI, VII гр. периодич. системы или p-донорную ф-цию.
 
Важнейшая количеств. характеристика донорно-акцепторной способности лигандов - дентатность, определяемая числом донорных центров лигандов, участвующих в координации.
 
Координационное число (КЧ) — число связей, образуемых центральным атомом с лигандами. Для комплексных соединений с монодентантными лигандами КЧ равно числу лигандов, а в случае полидентантных лигандов — числу таких лигандов, умноженному на дентатность.
 
Наиб. распространенные координационные числа - 4 и 6, но известно много комплексов, центр. атом к-рых имеет координационные числа 2, 3, 5, 7, 8 и более.
 
Геометрическая конфигурация
Геометрическая конфигурация строения внутренней сферы комплексов бывает различной: линейная, треугольная, квадратная, тетраэдрическая, октаэдрическая, пирамидальная, бипирамидальная и т.д., в зависимости от природы центрального атома металла, лигандов, внешнесферного окружения. Структура комплексов экспериментально обычно устанавливается рентгеноструктурным и спектральными методами.
 
Изомерия комплексных соединений
Под изомерией понимают способность к разному взаимному расположению атомов и атомных фрагментов в соединениях одинакового общего состава, диктующую отличия в химических и физических свойствах соответствующих соединений — изомеров.
У комплексных соединений явление изомерии обусловлено:
•  различиями в строении и координации лигандов
•  различиями в строении внутренней координационной сферы
•  разным распределением частиц между внутренней и внешней сферой. 
Основные виды изомерии комплексных соединений – геометрическая, оптическая, сольватная (или гидратная), ионная и координационная.
Пространственная (геометрическая) изомерия
Этот вид изомерии вызван неодинаковым размещением лигандов во внутренней сфере относительно друг друга. Необходимым условием геометрической изомерии является наличие во внутренней координационной сфере не менее двух различных лигандов.
Оптическая изомерия
Оптическая изомерия связана со способностью некоторых комплексных соединений существовать в виде двух форм, не совмещаемых в трехмерном пространстве и являющихся зеркальным отображением друг друга, как левая рука и правая. Поэтому оптическую изомерию называют иногда ещё зеркальной изомерией.
Структурная изомерия
Гидратная (сольватная) изомерия заключается в различном распределении молекул растворителя между внутренней и внешней сферами комплексного соединения, в различном характере химической связи молекул воды с комплексообразователем.
Классическим примером гидратной изомерии является существование трех изомерных гидратов хлорида хрома(III) с общей формулой CrCl3 . 6 H2O.
 
Ионная изомерия
 
Ионизационная изомерия определяется различным распределением заряженных лигандов между внутренней и внешней сферами комплекса и характеризует способность координационных соединений с одним и тем же элементным составом давать в растворе разные ионы.
Пример ионных изомеров – бромид дихлоротетраамминплатины(IV) и хлорид дибромотетраамминплатины(IV):
[Pt(NH3)4Cl2]Br2 и [Pt(NH3)4Br2]Cl2
Координационная изомерия
Координационная изомерия связана с переходом лигандов от одного комплексообразователя к другому: [Co(NH3)6][Cr(CN)6] и [Cr(NH3)6][Co(CN)6].

Комплексные соединения (лат. complexus — сочетание, обхват), или координационные соединения (лат. co — «вместе» и ordinatio — «упорядочение») — частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами.

 

 

 

 

тГеометрическое строение :

 

 

 

Электролитическая диссоциация и константы нестойкости комплексных ионов:

В растворах КС имеет место первичная и вторичная диссоциация (в расплавах КС происходит их термическая диссоциация). Первичная диссоциация протекает по типу сильных электролитов - практически необратимо:

 

K4[Fe(CN)6] ® 4K+ + [Fe(CN)6]4-

 

[Co(NH3)6]Cl3 ® [Co(NH3)6]3+ + 3Cl-

 

Первичной диссоциации не подвергаются комплексы без внешней сферы: [Pt(NH3)2Cl2], [Co(NH3)3(NO3)3].

 

Вторичная диссоциация характеризует диссоциацию самого комплекса. Она протекает в незначительной степени, подчиняется закону действия масс. Этот процесс характеризуют константой диссоциации. Так как величина этой константы фактически определяет прочность комплекса, то ее обычно называют константой нестойкости (K ). Вторичная диссоциация протекает по типу слабого электролита - обратимо и ступенчато:

 

[Ag(NH3)2]+ « [Ag(NH3)]+ + NH3

 

[Ag(NH3)]+ « Ag+ + NH3

 

В целях упрощения формы записи обычно записывают суммарное уравнение вторичной диссоциации:

 

[Ag(NH3)2] « Ag+ + 2NH3

 

Выражение константы нестойкости имеет вид:

 

Общая константа нестойкости комплекса равна произведению констант диссоциации по всем ступеням:   


22.01.2014; 16:29
хиты: 2561
рейтинг:0
Естественные науки
химия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь