пользователей: 21228
предметов: 10455
вопросов: 177496
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

все осльные

31) Относительная статистическая величина — это результат соотношения двух абсолютных статистических величин.Если соотносятся абсолютные величины с одинаковой размерностью, то получаемая относительная величина будет безразмерной (размерность сократится) и носит название коэффициент.

32) Прогноз по математическому ожиданию

Прогнозное значение принимается равным математическому ожиданию процесса

 (5.49)

Ошибка прогноза равна

 (5.50)

Дисперсия ошибки

. (5.51)

33) Средняя величина – это обобщающая характеристика множества индивидуальных значений некоторого количественного признака.Совокупность, изучаемая по количественному признаку, состоит из индивидуальных значений; на них оказывают влияние, как общие причины, так и индивидуальные условия. В среднем значении отклонения, характерные для индивидуальных значений, погашаются. Средняя, являясь функцией множества индивидуальных значений, представляет одним значением всю совокупность и отражает то общее, что присуще всем ее единицам.Средняя, рассчитываемая для совокупностей, состоящих из качественно однородных единиц, называется типической средней. Например, можно рассчитать среднемесячную заработную плату работника той или иной профессиональной группы

34) В качестве прогнозного значения берется условное математическое ожидание процесса в сечении на момент времени t0 + θ.

Обозначим случайный процесс в сечении на момент времени t0 через X, а в момент времени t0 + θ через Y и рассмотрим их как систему двух случайных величин (X,Y). Таким образом,

. (5.52)

Ошибка прогноза

 (5.53)

Дисперсия ошибки есть условная дисперсия случайной величины Y:

. (5.54)

35)

36)

 

37)

В статистике используют различные виды средних величин, которые делятся на два больших класса:степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадра-тическая, средняя кубическая);     структурные средние (мода, медиана).

38) Коэффициент ранговой корреляции Спирмена - это количественная оценка статистического изучения связи между явлениями, используемая в непараметрических методах.

 

Показатель показывает, как отличается полученная при наблюдении сумма квадратов разностей между рангами от случая отсутствия связи.

39) Ряды динамики подразделяются на моментные, интервальные и ряды средних величин.

 

Моментные ряды динамики отображают состояние исследуемых процессов на определенные даты времени.Интервальные ряды динамики отображают итоги развития или функционирования исследуемых процессов за отдельные периоды времени.

Для характеристики процесса за определенный период рассчитывают средний уровень из всех членов динамического ряда

Способы его расчета зависят от вида динамического ряда. Для интервальных рядов средняя рассчитывается по формуле средней арифметической, причем при равных интервалах применяется средняя арифметическая простая, а при неравных – средняя арифметическая взвешенная.

40) Статистическая отчетность - это форма государственного статистического наблюдения, при которой соответствующие органы  получают от предприятий (организации и учреждений)  необходимые им сведения в виде установленных в законном порядке отчетных документов (статистических отчетов) за подписями лиц, ответственных за представление и достоверность сообщаемых данных. По периодичности отчетность делится на периодическую и единовременную. Периодическая отчетность подразделяется на текущую и годовую. Государственная отчетность может быть представлена в электронном виде и на бумажном носителе.

Первичный учёт преступлений - это упорядоченная система сбора, регистрации и обобщения информации о преступности и государственных мерах социального контроля над ней и их движения путём сплошного, непрерывного и документального учёта преступлений, лиц, их совершивших, и процессуальной деятельности органов уголовной юстиции на этом направлении.

41) рактическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:

– описание характерных особенностей ряда в сжатой форме;

– построение модели временного ряда;

– предсказание будущих значений на основе прошлых наблюдений;

– управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.

Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.

Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:

1) графическое представление и описание поведения ряда;

2) выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;

3) исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;

4) построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;

5) прогнозирование будущих значений ряда.

При анализе временных рядов используются различные методы, наиболее распространенными из которых являются :

1) корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);

2) спектральный анализ, позволяющий находить периодические составляющие временного ряда;

3) методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;

4) модели авторегрессии и скользящего среднего для исследование случайной составляющей временного ряда ;

5) методы прогнозирования.

42) Статистической называется таблица, которая содержит сводную числовую характеристику исследуемой совокупности по одному или нескольким существенным признакам, взаимосвязанным логикой экономического анализа.

Виды: В зависимости от построения подлежащего статистические таблицы подразделяются на три вида: простые, групповые, и комбинированные.Простой называется такая таблица, в подлежащем которой дается перечень каких-либо объектов или территориальных единиц.

Групповыми называются статистические таблицы, подлежащее которых содержит группировку единиц совокупности по одному количественному или атрибутивному признаку.

 

Комбинационными называются статистические таблицы, подлежащее которых содержит группировку единиц совокупности одновременно по двум и более признакам: каждая из групп, построенная по одному признаку, разбивается, в свою очередь, на подгруппы по какому-либо другому признаку и так далее.

43) Под детерминированной (закономерной) составляющей временного ряда x1, x2, … , xn понимается числовая последовательность d1, d2, … , dn, элементы которой вычисляются по определенному правилу как функция времени t.

Если исключить из ряда детерминированную составляющую, то оставшаяся часть будет выглядеть хаотично. Ее называют случайной компонентой ε1, ε2, … , εn.

Если исключить из ряда детерминированную составляющую, то оставшаяся часть будет выглядеть хаотично. Ее называют случайной компонентой ε1, ε2, … , εn.

44) Результаты наблюдений таможенной статистики внешней торговли, то есть сведения, получаемые из декларации на товары, представляют собой абсолютные величины, отражающие уровень развития какого-либо явления (например, величина экспорта/импорта i-го товара в j-ю страну).

Абсолютные величины бывают моментные (отражают уровень развития явления на определенную дату, например, экспортная цена на нефть) и интервальные (отражают уровень развития явления за определенный интервал времени, например, величина экспорта за месяц, квартал, год и т.п.). В отличие от моментных интервальные абсолютные величины допускают последующее суммирование.

 

45) Сезонная составляющая

  1. На следующем шаге вычисляется сезонная составляющая, как среднее (для аддитивных моделей) или урезанное среднее (для мультипликативных моделей) всех значений ряда, соответствующих данной точке сезонного интервала по аналогичным временным периодам, с последующей сезонной корректировкой ряда. 
  2. Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты (составляющей) используется показатель абсолютного отклонения – SΔi (S—>SΔi). Сумма всех сезонных компонент, т.е. показателей абсолютных отклонений SΔi должна быть равна нулю.
  3. Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компонентыиспользуется индекс сезонности  Isi (S—>Isi). Среднее всех сезонных компонент, т. е. индексов сезонности Isi, должно быть равно единице.

 

 

Тренд-циклическая компонента

Циклическая компонента отличается от сезонной компоненты тем, что продолжительность цикла больше, чем один сезонный период (год) и разные циклы могут иметь разную продолжительность. Периодическая компонента рассматривается как долговременное колебательное изменение уровней — долгопериодическая функция. Примерами долговременной циклической компоненты могут служить демографические, инвестиционные и другие циклы;  соответствующая реакция экономики страны, находящейся в определенной фазе своего развития: I – фаза кризиса; II – фаза депрессии; III – фаза оживления; IV – фаза подъема и стабилизации. Теория циклического развития создает основу для преодоления экстраполяционных подходов в построении прогнозов, для достоверного учета нелинейности экономической динамики. Ориентация на цикличный характер развития способствует верному выявлению и отражению в прогнозах предстоящих критических или поворотных точек в трендовом движении.

 

46) Относительная величина интенсивности (показатель интенсивности, эффективности) — характеризует степень распространения одного явления в среде другого явления.

47)
В ходе обработки динамического ряда важнейшей задачей является выявление основной тенденции развития явления (тренда) и сглаживание случайных колебаний. Для решения этой задачи в статистике существуют особые способы, которые называют методами выравнивания.

Выделяют три основных способа обработки динамического ряда:

а) укрупнение интервалов динамического ряда и расчет средних для каждого укрупненного интервала;

б) метод скользящей средней;

в) аналитическое выравнивание (выравнивание по аналитическим формулам).

Укрупнение интервалов - наиболее простой способ. Он заключается в преобразовании первоначальных рядов динамики в более крупные по продолжительности временных периодов, что позволяет более четко выявить действие основной тенденции (основных факторов) изменения уровней.

По интервальным рядам итоги исчисляются путем простого суммирования уровней первоначальных рядов. Для других случаев расcчитывают средние величины укрупненных рядов (переменная средняя). Переменная средняя рассчитывается по формулам простой средней арифметической.

Скользящая средняя - это такая динамическая средняя, которая последовательно рассчитывается при передвижении на один интервал при заданной продолжительности периода.

  аналитическое выравнивание ряда динамики, которое позволяет получить описание плавной линии развития ряда. При этом эмпирические уровни заменяются уровнями, которые рассчитываются на основе определенной кривой, где уравнение рассматривается как функция времени. Вид уравнения зависит от конкретного характера динамики развития. Его можно определить как теоретически, так и практически. Теоретический анализ основывается на рассчитанных показателях динамики. Практический анализ - на исследовании линейной диаграммы.

48) Относительная величина структуры совокупности (ОВСС) - соотношение структурных частей изучаемого объекта и их целого. ОВСС характеризует состав изучаемых совокупностей, т.е. долю отдельных частей в общем объеме совокупности.  

49) методы  выравнивания динамического ряда. Способами выравнивания динамического ряда являются: укрупнение периодов, расчет групповой средней, расчет скользящей средней, метод наименьших квадратов

  • Укрупнение периодов — применяется, когда явление в интервальном ряду выражено в абсолютных величинах, уровни которых суммируются по более крупным периодам. Применение возможно при кратном числе периодов.
  • Вычисление групповой средней — применяется, когда уровни интервального ряда выражены в абсолютных, средних или относительных величинах, которые суммируются, а затем делятся на число слагаемых. Способ применяется при кратном числе периодов.
  • Расчет скользящей средней — применяется, когда уровни явлений любого ряда выражены в абсолютных, средних или относительных величинах. Данный метод применяется при наличии некратного числа временных периодов (7, 11, 13, 17, 19) достаточно длинного динамического ряда. Путем вычисления групповой средней значений 3 периодов, а в последующем переходя на определенный уровень и два соседних с ним, осуществляется "скольжение" по периодам. Каждый уровень заменяется на среднюю величину (из данного уровня и двух соседних с ним). Данный метод применяется, когда не требуется особой точности, когда имеется достаточно длинный ряд и можно пренебречь потерей двух значений ряда; в случаях, когда изучается развитие явления под влиянием одного или двух факторов.
  • Метод наименьших квадратов применяется для более точной количественной оценки динамики изучаемого явления. Этим способом получаются такие выровненные значения уровней ряда, квадраты отклонений которых от истинных (эмпирических) показателей дают наименьшую сумму.
  • Графический метод - выравнивание от руки или с помощью линейки, циркуля графического изображения динамики изучаемого явления.

50) Абсолютный прирост   характеризует абсолютный размер увеличения (или уменьшения) уровня явления за определенный промежуток времени.

Темп роста   - показатель, характеризующий соотношение двух уровней ряда, выражающийся в процентах:   

Как и абсолютные приросты, темпы роста для любых рядов динамики сами по себе являются интервальными показателями, т.е. характеризуют тот или иной промежуток времени.

3. Темп прироста  характеризует прирост в относительных величинах. Он характеризует относительную скорость изменения уровней ряда в единицу времени. Темп (коэффициент) прироста показывает, на сколько процентов (на какую долю) уровень данного периода или момента времени  больше (или меньше) базисного уровня. В зависимости от базисного уровня – базисный и цепной темпы прироста: 

 

51) Для анализа динамических рядов в статистике используются такие показатели:

 

1) уровнем ряда является абсолютная величина каждого члена динамического ряда. Все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровни ряда. Начальный уровень – величина первого члена ряда. Конечный уровень – величина последнего члена ряда, средний уровень – средняя из всех значений динамического ряда;

2) абсолютный прирост – характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени, определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым делается сопоставление, именуется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели, а если все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными;

3) темп роста характеризует отношение данного уровня статистического процесса к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными, а к начальному – базисными;

4) если у темпов роста база сравнения принимается за 1, то полученные статистические показатели называются коэффициентами роста;

5) темпом прироста называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах. Темп прироста можно рассчитать по данным о темпе роста;

6) средний темп (коэффициент) роста определяется по формуле средней геометрической;

7) коэффициент опережения – это отношение базисных темпов роста двух динамических рядов за одинаковые отрезки времени;

8) интерполяция – способ определения неизвестных промежуточных значений динамического ряда.

9) экстраполяция – метод определения количественных характеристик для совокупностей и явлений, не подвергшихся наблюдению, путем распространения на них результатов, полученных из наблюдения над аналогичными совокупностями за прошедшее время, на будущее и т. д.

52) Относительная величина (показатель) динамики — представляет собой отношение уровня исследуемого явления или процесса за данный период к уровню этого же процесса или явления в прошлом.

53)

54) Медианой называется вариант, расположенный в центре ранжированного ряда. Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц со–вокупности. При этом у одной половины единиц сово–купности значение варьирующего признака меньше ме–дианы, у другой – больше.

Описательный характер медианы проявляется в том, что она характеризует количественную границу значений варьирующего признака, которыми облада–ет половина единиц совокупности.

При определении медианы в интервальных ва–риационных рядах сначала определяется интервал, в котором она находится (медианный интервал). Этот интервал характерен тем, что его накопленная сумма частот равна или превышает полусумму всех ча–стот ряда. Расчет медианы интервального ва–риационного ряда производится по формуле:

 

Мода – величина признака, которая чаще всего встречается в данной совокупности. Применительно к вариационному ряду модой является наиболее часто встречающееся значение ранжированного ряда. Она показывает размер признака, свойственный значи–тельной части совокупности, и определяется по фор–муле:

 

55)

56) Самый распространенный вид средней величины – средняя арифметическая. Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределен равномерно между всеми единицами совокупности. Вычисление данной величины сводится к суммированию всех значений варьирующего признака и делению полученной суммы на общее количество единиц совокупности. Например, пять рабочих выполняли заказ на изготовление деталей, при этом первый изготовил 5 деталей, второй – 7, третий – 4, четвертый – 10, пятый– 12. Поскольку в исходных данных значение каждого варианта встречалось только один раз, для определения средней выработки одного рабочего следует применить формулу простой средней арифметической:

 

Наряду с простой средней арифметической изучают среднюю арифметическую взвешенную. Например, рассчитаем средний возраст студентов в группе из 20 человек, возраст которых варьируется от 18 до 22 лет, где xi – варианты осредняемого признака, fi – частота, которая показывает, сколько раз встречается i-е значение в совокупности

В некоторых случаях характер исходных статистических данных таков, что расчет средней арифметической теряет смысл и единственным обобщающим показателем может служить только другой вид средней величины – средняя гармоническая. В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность при расчете обобщающих статистических показателей в связи с повсеместным внедрением электронно-вычислительной техники. Большое практическое значение приобрела средняя гармоническая величина, которая тоже бывает простой и взвешенной. Если известны численные значения числителя логической формулы, а значения знаменателя неизвестны, но могут быть найдены как частное деление одного показателя на другой, то средняя величина вычисляется по формуле средней гармонической взвешенной.

Если при использовании средней гармонической веса всех вариантов (f) равны, то вместо взвешенной можно использовать простую (невзвешенную) среднюю гармоническую:

 

 

Виды степенных средних:

Средняя геометрическая применяется, когда имеется n коэффициентов роста, при этом индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики. Средняя характеризует, таким образом, средний коэффициент роста. Средняя геометрическая простая рассчитывается по формуле

 

Формула средней геометрической взвешенной имеет следующий вид:

 

Приведенные формулы идентичны, но одна применяется при текущих коэффициентах или темпах роста, а вторая – при абсолютных значениях уровней ряда.

Средняя квадратическая применяется при расчете с величинами квадратных функций, используется для измерения степени колеблемости индивидуальных значений признака вокруг средней арифметической в рядах распределения и вычисляется по формуле

 

Средняя квадратическая взвешенная рассчитывается по другой формуле:

 

Средняя кубическая применяется при расчете с величинами кубических функций и вычисляется по формуле

 

средняя кубическая взвешенная:

 

57) Существует 2 вида отбора:

 

1.Индивидуальный: случайный, механический, стратифицированный

2.Серийный

Помимо этого различают:

1.Комбинированный

2.Ступенчатый

3.Многфазный

Любой из этих видов отбора может быть повторный и бесповторный. По степени охвата единиц изучаемой совокупности выделяют малые и большие выборки. Случайный отбор осуществляется с помощью жеребьевки или по табл. случайных чисел. При механическом отборе выбираются n/N элемента, если единицы совокупности не ранжированы, то 1-й элемент выбирается наугад. Если ранжированный, то из середины 1-й 100-и. Принцип случайного отбора в механической выборке обеспечивается тем, что единицы ген. Совокупности располагаются в том порядке, который не оказывает влияния на поведение изучаемого признака.

58)смотри 51

59) Наиболее разработанными в математической статистике методами анализа взаимосвязей являются корреляционный и регрессионный анализ. Но прежде чем переходить к их характеристике, остановимся на вопросе о характере и форме тех взаимосвязей, которые присущи объективным явлениям природы и общества.

Статистические (корреляционные) зависимости. Функциональная зависимость между признаками предполагает их изолированность, она действует, так сказать, «при про чих равных условиях». В общественной жизни такие ситуации бывают крайне редко. Как правило, воздействие одной переменной (причины) на другую не изолировано от остальных факторов, а происходит, таким образом, что на изучаемую связь прямо или косвенно влияют многие другие факторы. Здесь налицо зависимость особого вида. Для описания и изучения такого рода зависимостей в науке используется понятиестатистический, или корреляционной, связи. 

  60) смотри 53


06.06.2014; 00:54
хиты: 269
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь