пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Непрерывность функции в точке. Приращение функции, приращение аргумента. Свойства функций, непрерывных в точке и на отрезке

 Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.

image001.gif

 

Тот же факт можно записать иначе: image002.gif

 

            Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

  Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

image005.gif

верно неравенство                               image006.gif.

 

Определение.  Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

f(x) = f(x0) + a(x)

где a(х) – бесконечно малая при х®х0.

Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.

2) Частное двух непрерывных функций image007.gif– есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.

3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x),  v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.

Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.

Непрерывность функции на интервале и на отрезке.  

Определение. Функция f(x) называется непрерывной на интервале (отрезке), если она непрерывна в любой точке интервала (отрезка).

При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.

Свойства функций, непрерывных на отрезке.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M £ f(x) £ M.

Доказательство этого свойства основано на том, что функция, непрерывная в точке х0, ограничена в некоторой ее окрестности, а если разбивать отрезок [a, b] на бесконечное количество отрезков, которые “стягиваются” к точке х0, то образуется некоторая окрестность точки х0.

Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х1 и х2, что f(x1) = m,  f(x2) = M, причем

m £ f(x) £ M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.

Т.е. если sign(f(a)) ¹ sign(f(b)), то $ х0: f(x0) = 0.

Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если для любого e>0 существует D>0 такое, что для любых точек х1Î[a,b] и x2Î[a,b] таких, что

ïх2 – х1ï< D

верно неравенство                                    ïf(x2) – f(x1)ï < e

Отличие равномерной непрерывности от “обычной” в том, что для любого e существует свое D, не зависящее от х, а при “обычной” непрерывности D зависит от e и х.

Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.

(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)

Свойство 7: Если функция f(x) определена, монотонна и непрерывна на некотором промежутке, то и обратная ей функция х = g(y) тоже однозначна, монотонна и непрерывна.

Приращение аргумента и функции

На оси Х – две точки: x0 и x1 (рис.1). Если от x1 отнимем x0, то узнаем длину шага между ними – а говоря иначе, узнаем, на сколько приросла точка x0 в точке x1. Эта разность между двумя заданными точками оси X и называется приращением аргумента.

Точки x0 и x1 образуют на оси Y соответственно точки у0 и у1. Если от  у1 отнять у0, то мы получим приращение функции.

Priraschenie_funkccii.png

Итак, в функции y = f(x) относительно определенных точек x0 и x1:
разность x1 – x0 называется приращением аргумента, а разность у1 – у0 называется приращением функции.

Но у0 и у1 – зависимые переменные (зависимые от значений х). То есть их правильно записывать так:f(x0) и f(x1). Следовательно, приращение функции – это разность f(x1) – f(x0).
 

Приращение обозначается греческой буквой Δ (дельта):

Δx1 – x0;

Δ(или Δ f) = f(x1) – f(x0).

Можно сказать и иначе: если к x0 прибавить величину приращения Δx, то мы получим точку x1
То есть x1 = x0 + Δx (рис.2). 
Тогда точку f(x1), отмеченную на первом рисунке как у1, тоже можно обозначить иначе: 
f(x0 + Δx).

Осталось вывести формулу приращения функции.

Формула приращения функции:

Δy = f(x0 + Δx) – f(x0)

или

Δf = f(x0 + Δx) – f(x0)

 

Пример: Дана функция y = x2. На оси абсцисс – две точки:
х0 = 3,
(х0 + Δx) = 4.
Надо найти приращение функции при переходе от точки х0 к точке (х0 + Δx).

Решение.

Итак, мы хотим найти Δy.

Сначала определимся с функцией:
так как у = f(x), то f(x) = x2.

Теперь вычисляем приращение аргумента:
Δx = (х0 +  Δx) – х0 = 4 – 3 = 1

Находим значения функции при х0 = 3 и (х0 +  Δx) = 4:
f(x0) = f(3) = 32 = 9
f(x0 + Δx) = f(4) = 42 = 16

Осталось найти приращение функции:
Δy = f(x0 + Δx) – f(x0) = f(4) – f(3) = 16 – 9 = 7.

Ответ: Δy = 7.


24.01.2014; 00:16
хиты: 148
рейтинг:+1
Точные науки
математика
прикладная математика
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь