пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Реакции с участием α-водородного атома

Альдольная конденсация. Под действием каталитических количеств водной кислоты или основания альдегиды превращаются в β-оксиальдегиды. Этот процесс носит название альдольной конденсации:

28096_html_m42fab562.gif

Альдольная конденсация, катализируемая основаниями. Катализируемая основаниями альдольная конденсация начинается с образования енолят-иона альдегида (стадия 1). Поскольку енолят-ион является нуклеофилом, то он атакует карбонильную группу другой молекулы альдегида. В результате образуется алкоксид-ион (стадия 2). Далее происходит протонирование алкоксид-иона водой, при этом образуется конечный продукт – альдоль и регенерируется катализатор (ОН-) (стадия 3). Это происходит потому, что алкоксид-ион является более сильным основанием, чем гидроксид-ион.

28096_html_m15a0c25c.gif

При нагревании в присутствии основания альдоли легко отщепляют воду, образуя ,-ненасыщенные альдегиды. Дегидратация протекает легко благодаря кислому характеру атома водорода у -углеродного атома углерода и вследствие того, что образующийся продукт содержит сопряженную систему двойных связей:


28096_html_50dcd261.gif

Этот тип конденсации получил название кротоновой.

Альдольная конденсация, катализируемая кислотами. Механизм альдольной конденсации, катализируемой кислотами, включает две основных стадии: превращение кето-формы альдегида в енольную форму (стадия 1) и атака образовавшимся енолом карбонильной группы альдегида (стадия 2):

28096_html_28761448.gif

Альдоль под действием разбавленной кислоты отщепляет воду даже при комнатной температуре, поэтому конденсацию, катализируемую кислотой, практически невозможно остановить на стадии b-оксиальдегида:

28096_html_m35cf56fc.gif

Кетоны вступают в альдольную конденсацию значительно труднее, чем альдегиды. Однако, при катализе кислотами образующийся в небольших количествах 4-окси-4-метил-2-пентанон (продукт альдольной конденсации) будет быстро дегидратироваться в 4-метил-3-пентен-2-он (мезитилоксид):

28096_html_mfbb2529.gif

2. Галогенирование альдегидов и кетонов

Реакция галогенирования протекает с участием α-углеродного атома. С галогеном реагирует не само карбонильное соединение, а его енольная форма:

28096_html_m189917c5.gif

При присоединении галогена к енолу образуется неустойчивый галогенгидрин. От него отщепляется галогеноводород, и образуется α-галогензамещенное карбонильное соединение. Реакция катализируется щелочью. Если в молекуле альдегида или кетона с карбонильной группой связана метильная группа (метилкетоны и ацетальдегид), то при избытке галогена в ней замещаются все атомы водорода:

28096_html_1c8d4105.gif

Тригалогенметильная группа является сильнейшим акцептором электронов, поэтому карбонильная активность полученного альдегида или кетона становится высокой, и гидроксид-анион, служивший катализатором в этой реакции, проявляет уже нуклеофильные свойства и атакует карбонильный атом углерода. От полученного аддукта сравнительно легко отщепляется тригалогенметил-анион, который стабилизируется присоединением протона и образует тригалогенметан:

28096_html_1ddf44e6.gif

Такая реакция носит название галоформной. При использовании йода в результате галоформной реакции образуется йодоформ – кристаллическое вещество желтого цвета, которое легко идентифицировать. Это позволяет использовать галоформную реакцию для обнаружения метилкарбонильных соединений, в этом случае ее называют йодоформной.

 
 
 
 

 

 
 

21.01.2014; 15:59
хиты: 149
рейтинг:0
Естественные науки
химия
органическая химия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь