пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

2 курс 2 семестр:
» Статистика
» Эконометрика
» Социология
» ВЭД
» Экономика
2 курс 1 семестр (экономика орг):
» Экон.орг.
» псих
» менеджмент
» методы
2 семестр (математика):
» математика
2 семестр (макро):
» Экономика
I семестр:
» История

Повторные независимые испытания. Формула Бернулли.

Повторные независимые испытания

 

 

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие A. При этом интерес представляет исход не каждого "отдельного испытания, а общее количество появлений события A в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа m появлений события A в результате n испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события A в каждом испытании постоянна. Такие испытания называются повторными независимыми.

 

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

 

Формула Бернулли

 

Воспользуемся понятием сложного события, под которым подразумевается совмещение нескольких элементарных событий, состоящих в появлении или непоявлении события A в i–м испытании. Пусть проводится n независимых испытаний, в каждом из которых событие A может либо появиться с вероятностью p, либо не появиться с вероятностью q=1-p. Рассмотрим событие B_m, состоящее в том, что событие A в этих n испытаниях наступит ровно m раз и, следовательно, не наступит ровно (n-m) раз. Обозначим A_i~(i=1,2,\ldots,{n}) появление события A, a \overline{A}_i — непоявление события A в i–м испытании. В силу постоянства условий испытания имеем

 

\begin{gathered}P\{A_1\}=P\{A_2\}=\cdots=P\{A_n\}=p,\\P\{\overline{A}_1\}=P\{\overline{A}_2\}=\cdots=P\{\overline{A}_n\}=1-p=q\end{gathered}

 

Событие A может появиться m раз в разных последовательностях или комбинациях, чередуясь с противоположным событием \overline{A}. Число возможных комбинаций такого рода равно числу сочетаний из n элементов по m, т. е. C_n^m. Следовательно, событие B_m можно представить в виде суммы сложных несовместных между собой событий, причем число слагаемых равно C_n^m:B_m=A_1A_2\cdots{A_m}\overline{A}_{m+1}\cdots\overline{A}_n+\cdots+\overline{A}_1\overline{A}_2\cdots\overline{A}_{n-m}A_{n-m+1}\cdots{A_n},

(3.1)


где в каждое произведение событие A входит m раз, а \overline{A} — (n-m) раз.
 

Вероятность каждого сложного события, входящего в формулу (3.1), по теореме умножения вероятностей для независимых событий равна p^{m}q^{n-m}. Так как общее количество таких событий равно C_n^m, то, используя теорему сложения вероятностей для несовместных событий, получаем вероятность события B_m(обозначимееP_{m,n})P_{m,n}=C_n^mp^{m}q^{n-m}\quad \text{or}\quad  P_{m,n}=\frac{n!}{m!(n-m)!}p^{m}q^{n-m}.

(3.2)

 

Формулу (3.2) называют формулой Бернулли, а повторяющиеся испытания, удовлетворяющие условию независимости и постоянства вероятностей появления в каждом из них события A, называют испытаниями Бернулли, или схемой Бернулли.

 

 

При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и тоже испытание повторяется многократно и исход каждого испытания независим от исходов других. Такой эксперимент еще называется схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

1) многократное извлечение из урны одного шара при условии, что вынутый шар после регистрации его цвета кладется обратно в урну;

2) повторение одним стрелком выстрелов по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой (роль пристрелки не учитывается).

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы; вероятность появления события А в каждом отдельно взятом или единичном испытании постоянна и от испытания к испытанию не изменяется (т.е. испытания проводятся в одинаковых условиях). Обозначим вероятность появления события А в единичном испытании буквой р, т.е. p=P(A), а вероятность противоположного события (событие А не наступило) - буквой q=P(A¯¯¯)=1p.

Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражаетсяформулой Бернулли

Pn(k)=Cknpkqnk,q=1p.

Распределение числа успехов (появлений события) носит название биномиального распределения.

 

 

Пример. В урне 20 белых и 10 черных шаров. Вынули 4 шара, причем каждый вынутый шар возвращают в урну перед извлечением следующего и шары в урне перемешивают. Найти вероятность того, что из четырех вынутых шаров окажется 2 белых.

Решение. Событие А – достали белый шар. Тогда вероятности
image008.gifimage010.gif
По формуле Бернулли требуемая вероятность равна 
image012.gif.

 

Пример. Определить вероятность того, что в семье, имеющей 5 детей, будет не больше трех девочек. Вероятности рождения мальчика и девочки предполагаются одинаковыми.

Решение. Вероятность рождения девочки 
image014.gif, тогда image016.gif.

Найдем вероятности того, что в семье нет девочек, родилась одна, две или три девочки:

image018.gifimage020.gif,

image022.gifimage024.gif.

Следовательно, искомая вероятность

image026.gif


06.07.2014; 16:22
хиты: 117
рейтинг:0
Точные науки
математика
общая алгебра
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь